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a b s t r a c t 

Nonreciprocal elements, such as isolators and circulators, play an important role in classical and quantum in- 
formation processing. Recently, strong nonreciprocal effects have been experimentally demonstrated in cavity 
optomechanical systems. In these approaches, the bandwidth of the nonreciprocal photon transmission is limited 
by the mechanical resonator linewidth, which is arguably much smaller than the linewidths of the cavity modes 
in most electromechanical or optomechanical devices. In this work, we demonstrate broadband nonreciprocal 
photon transmission in the reversed-dissipation regime, where the mechanical mode with a large decay rate can be 
adiabatically eliminated while mediating anti-  -symmetric dissipative coupling with two kinds of phase factors. 
Adjusting the relative phases allows the observation of periodic Riemann-sheet structures with distributed excep- 
tional points (Eps). At the Eps, destructive quantum interference breaks both the  - and -inversion symmetry, 
resulting in unidirectional and chiral photon transmissions. In the reversed-dissipation regime, the nonrecipro- 
cal bandwidth is no longer limited by the mechanical mode linewidth but is improved to the linewidth of the 
cavity resonance. Furthermore, we find that the direction of the unidirectional and chiral energy transfer could 
be reversed by changing the parity of the Eps. Extending non-Hermitian couplings to a three-cavity model, the 
broken anti-  -symmetry allows us to observe high-order Eps, at which a parity-dependent chiral circulator is 
demonstrated. The driving-phase controlled periodical Riemann sheets allow observation of the parity-dependent 
unidirectional and chiral energy transfer and thus provide a useful cell for building up nonreciprocal array and 
realizing topological, e.g., isolators, circulators, or amplifiers. 
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. Introduction 

Nonreciprocal elements play an important role in both classical
nd quantum information processing [1,2] . Such devices can reduce
ackscattering induced interference and then protect the signal trans-
ission [3–6] . In principle, non-reciprocity can be achieved by break-

ng the time-reversal symmetry. Conventional nonreciprocal devices are
ainly based on the magneto-optical responses in ferrite medium [7] .
owever, the required large magnetic field is deleterious for many quan-

um information devices [8–10] . In recent years, there has been an ac-
ive search for alternatives to magneto-optical non-reciprocity. Several
agnetic-free strategies have been developed based on the, e.g., refrac-

ive index modulation [11–13] ,  -symmetric structures [14–19] , and
ut-of-phase temporal modulations [20,21] . 

Among various types of resonator-based quantum systems [22–
7] , cavity optomechanical devices are becoming a versatile platform
or on-chip controlling photon transfer [28–36] . Optomechanical sys-
∗ Corresponding authors. 
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ems have also been proposed as powerful alternatives to build non-
eciprocal elements such as isolators [37–39] , circulators [40–42] and
irectional amplifiers [43–45] for optics or microwaves. In optome-
hanical devices, the required broken time-reversal symmetry for non-
eciprocity has been realized using, e.g., a synthetic gauge field [46–
8] , Brillouin momentum biases [49–52] , a spinning induced Sagnac
requency shifts [53] , or Floquet frequency components [54] . Breaking
he time-reversal symmetry in cavity optomechanical devices is particu-
arly appealing because strong non-reciprocity can be produced with-
ut needing a magnetic field or a nonlinear medium [55] . Depend-
ng on the achievements of the ground-state cooling of the mechan-
cal resonators, nonreciprocal photon transmission and amplifications
ave been demonstrated in superconducting electromechanical devices
ith quantum-limited add-noise [56–59] . However, the bandwidth for
onreciprocal photon transmission is arguably limited to the Kilohertz
o Megahertz (kHz-MHz) range for optomechanical devices [46–52] or
he Hertzthe to the Kilohertz (Hz-kHz) range for electro-mechanical
qis.ac.cn (Y. Liu) . 
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Fig. 1. (a) Schematic illustration of the cavity optomechanical system. 𝑎 j , in 
( 𝑎 j , out ) denotes the input (output) signal amplitude from the j-th port. 𝜅1 , e ( 𝜅2 , e ) 
denotes the external loss of mode 𝑎 ( 𝑏 ), respectively. The cavity mode 𝑎 ( 𝑏 ) 
optomechanically couples to the mechanical mode 𝑚 , and 𝑔 𝑎 ( 𝑔 𝑏 ) is the single- 
photon coupling strength, which can be greatly enhanced and linearized with 
an external strong pump field. (b) Energy level diagram of the system. The lin- 
earized effective optomechanical coupling strengths are given by 𝐺 𝑎 and 𝐺 𝑏 , 
respectively. 
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evices [54–59] . In the above approaches, the bandwidth limit is set
y the linewidth of the mechanical oscillator resonance [60–62] , which
s usually much smaller than the corresponding cavity mode linewidth
n the microwave or optical domain. 

Recently, experimental studies of non-Hermitian optomechanics
ave shown that the mechanical linewidth can be close to or even much
arger than the cavity linewidth [63–66] . When the optomechanical sys-
em enters the reversed-dissipation regime where the mechanical decay
ate is much larger than the cavity linewidth [67] , the mechanical mode
erves as a dissipative quantum reservoir and the dynamical backaction
o the optical modes can no longer be ignored [68] . In such a reversed-
issipation regime, it has been discussed that the mechanical reservoir
an introduce a new type of parametric instability [69] or be further
eveloped to enhance optomechanical entanglement [70] . 

In this work, we propose broadband optomechanical nonreciprocity
n the reversed-dissipation regime, in which the nonreciprocal band-
idth is no longer limited by the mechanical linewidth. Reversing the
issipations of optical and mechanical modes allows the bandwidth to
e dictated by the cavity linewidth. To be more specific, we study a mul-
imode optomechanical system where two cavity modes optomechani-
ally coupled to a common mechanical mode. In the reversed-dissipation
egime, the mechanical mode with a large decay rate is adiabatically
liminated and then mediates a dissipative coupling between these two
ptical modes. Without loss of generality, the coherent coupling be-
ween cavity modes is also taken into consideration. By controlling the
atio between the two parameters, relative phase and coupling rate, the
ystem energy levels exhibit a periodic Riemann sheet with distributed
dd and even Eps. The reversed dissipation will not only overpass the
onreciprocal bandwidth, which is limited by the narrow mechanical
inewidth presented in previous works [37–62] but also result in a bro-
en -inversion symmetry and chiral energy transfer. In the following,
e present a parity-dependent unidirectional and chiral energy transfer,

he direction of which could be totally reversed by toggling the parity
f Eps. 

. The model 

As shown in Fig. 1 a, our model consists of two bosonic cavity modes
nd a low-Q mechanical resonator. Two cavity modes couple to each
ther with a coupling strength 𝐺, and both of them optomechani-
ally couple to the mechanical mode 𝑚 with the single-photon coupling
trength given by 𝑔 𝑎 and 𝑔 𝑏 , respectively. The above system can be well
escribed by the following non-Hermitian Hamiltonian: 

 = 

(
𝜔 𝑎 − 𝑖𝜅1 

)
𝑎 †𝑎 + 

(
𝜔 𝑏 − 𝑖𝜅2 

)
𝑏 †𝑏 (1) 

+ 

(
𝜔 𝑚 − 𝑖𝛾

)
𝑚 †𝑚 + 𝐺( 𝑎 †𝑏 + 𝑏 †𝑎 ) 

+ 𝑔 𝑎 𝑎 
†𝑎 ( 𝑚 + 𝑚 †) + 𝑔 𝑏 𝑏 

†𝑏 ( 𝑚 + 𝑚 †) 

ere we set ℏ = 1 . 𝑎 ( 𝑎 †) , 𝑏 ( 𝑏 †) and 𝑚 ( 𝑚 †) represent the bosonic anni-
ilation (creation) operators with resonant frequencies 𝜔 𝑎 , 𝜔 𝑏 and 𝜔 𝑚 ,
espectively. 𝜅1 = 𝜅1 ,𝑖 + 𝜅1 ,𝑒 ( 𝜅2 = 𝜅2 ,𝑖 + 𝜅2 ,𝑒 ) denotes the loss for cavity
odes 𝑎 ( 𝑏 ), where 𝜅1 ,𝑖 ( 𝜅1 ,𝑒 ), 𝜅2 ,𝑖 ( 𝜅2 ,𝑒 ) is the internal, external loss of
ode 𝑎 ( 𝑏 ), respectively. 𝛾 represents the dissipation of the mechanical
ode 𝑚 . 

To linearize the Hamiltonian (1) , we can introduce two driving
ones to the system: 𝑖 ( 𝜀 1 𝑎 †𝑒 − 𝑖 Ω𝑡 𝑒 − 𝐻.𝑐. ) + 𝑖 ( 𝜀 2 𝑏 †𝑒 − 𝑖 Ω𝑡 − 𝐻.𝑐. ) , then the
inearized Hamiltonian reads 

̃
 = 

(
Δ𝑎 − 𝑖𝜅1 

)
𝑎 †𝑎 + 

(
Δ𝑏 − 𝑖𝜅2 

)
𝑏 †𝑏 (2) 

+ 

(
𝜔 𝑚 − 𝑖𝛾

)
𝑚 †𝑚 + 𝐺( 𝑎 †𝑏 + 𝑏 †𝑎 ) 

+ 𝐺 𝑎 𝑎 
†𝑚 + 𝐺 ∗ 

𝑎 
𝑚 †𝑎 + 𝐺 𝑏 𝑏 

†𝑚 + 𝐺 ∗ 
𝑏 
𝑚 †𝑏 

𝑎 = 𝜔 𝑎 − Ω (Δ𝑏 = 𝜔 𝑏 − Ω) is the frequency detuning between driving
ones and the mode 𝑎 ( 𝑏 ). 𝐺 𝑎 ( 𝐺 𝑏 ) is the linearized optomechanical cou-
ling strength between mode 𝑎 ( 𝑏 ) and mechanical mode 𝑚 . The en-
rgy level diagram of the linearized system is presented in Fig. 1 b.
22 
n the reversed-dissipation regime, the decay rate of the mechanical
ode is much larger than both the decay rates of the cavity modes

nd the optomechanical couplings strengths, viz., 𝛾 ≫ ( 𝐺 𝑎 , 𝐺 𝑏 , 𝜅1 , 𝜅2 ) .
fter adiabatically eliminating the mechanical mode 𝑚 , a strong dark
tate interaction takes place (see Supplementary Materials Section 1 for
etails), and the effective Hamiltonian for the whole system can be
xpressed as 

 

eff 
= ( 𝜔 − 𝑖𝜅) 𝑎 †𝑎 + ( 𝜔 − 𝑖𝜅) 𝑏 †𝑏 (3) 

+ 

(
𝑖𝐽e − 𝑖𝜃 + 𝐺 

)
𝑎 †𝑏 + 

(
𝑖𝐽e 𝑖𝜃 + 𝐺 

)
𝑏 †𝑎 

ere, we assume |𝐺 𝑎 | = |𝐺 𝑏 | and 𝐽 = |𝐺 𝑎 |2 ∕ 𝛾 is the effective dissipa-
ive coupling strength. In a reference frame rotating at the driving fre-
uency Ω, the modes 𝑎 , 𝑏 and 𝑚 could be assumed to be degenerate (i.e.,

𝑎 = Δ𝑏 = 𝜔 𝑚 = 𝜔 ), and the cavity mode 𝑎 , 𝑏 has the same dissipation
ate 𝜅. 

The eliminated mechanical mode 𝑚 now has two impacts on
he Hamiltonian (3) . First, it produces dissipative coupling terms
𝐽 (e − 𝑖𝜃𝑎 †𝑏 + e 𝑖𝜃𝑏 †𝑎 ) to the system. Notably, dissipative coupling is rec-
gnized as anti-  symmetric and has become an important concept
f non-Hermitian physics in recent years [71–76] . Correspondingly,
he coherent coupling terms 𝐺( 𝑎 †𝑏 + 𝑏 †𝑎 ) are  symmetric (see Sup-
lementary Materials Section 2 for details). Another aspect is that it
ncreases the total losses of modes 𝑎 and 𝑏 , that is, 𝜅 = 𝜅i + 𝜅e + 𝐽 .
n the following discussion, without loss of generality, we assume
hat modes 𝑎 and 𝑏 are always under the critical-coupling condition,
.e., 𝜅 = 2 

(
𝐽 + 𝜅i 

)
. 

Considering both the coherent and dissipative couplings for cavity
odes 𝑎 and 𝑏 , the total interaction Hamiltonian is then shown with the
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etailed expression as follows: 

 I = 

(
𝐺 + 𝑖𝐽e − 𝑖𝜃

)
𝑎 †𝑏 + 

(
𝐺 + 𝑖𝐽e 𝑖𝜃

)
𝑏 †𝑎 (4)

otably, the mechanical mode mediates two kinds of phase factors in
issipative coupling. One mediated phase factor is fixed at 𝜋2 , which is
epresented by the imaginary unit in Eq. 4 . The other phase factor is de-
ermined by the phase difference between two parametric optomechan-
cal couplings, i.e., 𝜃 = arg ( 𝐺 ∗ 

𝑎 
𝐺 𝑏 ) . In the experiment, such a parametric

hase is in-situ tunable by controlling the phases between the external
ump tones. The above Eq. 4 indicates that destructive quantum inter-
erence occurs between coherent and dissipative couplings at a special
hase factor. It is also the key factor to the unidirectional and chiral
roperties discussed in this work. 

. Phase controlled periodical Riemann-sheets and odd-even 

xceptional points 

To reveal the odd-even exceptional points, we start by studying how
he parametric phase 𝜃 affects the energy level evolution. The corre-
ponding complex eigenvalues of 𝐻 

eff 
are given as 

± = 𝜔 − 𝑖𝜅 ± 

√ (
𝑖𝐽e − 𝑖𝜃 + 𝐺 

)(
𝑖𝐽e 𝑖𝜃 + 𝐺 

)
(5)

he eigenfrequencies 𝜔 ± and the corresponding linewidthes are the
eal and imaginary parts of 𝜆± , respectively. To verify the validity
f the adiabatical approximation, we also perform numerical calcu-
ations of eigenfrequencies of Hamiltonian (2) , as shown in Fig. 2 b.
ompared to Fig. 2 a, Fig. 2 b also shows a similar Riemann sheets
tructure with extra eigenvalues of mode 𝑚 [semitransparent surface
n Fig 2 b]. However, in the reversed-dissipation regime, the mechan-
cal mode 𝑚 is almost decoupled to the Riemann sheet structure.
hus, the adiabatical elimination of mode 𝑚 is appropriate in our
nalyses. 

To more clearly reveal the periodic coincidence and repulsion of
igenvalues, we plot curves of the eigenfrequencies and linewidths for
∕ 𝐺 = (0 . 5 , 1 , 1 . 5) in Fig. 2 c and 2 d. Indeed, the non-Hermitian de-
eneracy and exceptional points (Eps) exist only when the dissipative
ig. 2. Riemann sheet structure of the eigenvalues and eigenvalues evolution. 

he dissipative coupling strength 𝐽 . Here, the coherent coupling strength is fixed at 𝐺
or microwave cavity [56] , or 𝜅𝑖 = 1 MHz for optical cavity [50] . (b) Eigenvalues of H
nd the other parameters are the same with (a). (c), (d) The real parts and imaginary 
espectively. The parameters used are the same as in (a). The green (blue) arrow mar

23 
nd coherent couplings are balanced, viz., 𝐽 = 𝐺. When the dissipative
nd coherent couplings are not balanced, either frequencies ( 𝐽 < 𝐺) or
inewidths ( 𝐽 > 𝐺) will not coincide. 

As shown in Fig. 2 , the eigenfrequencies exhibit periodic a Riemann-
heet structure as a function of phase 𝜃 and the ratio between dissi-
ative and coherent coupling strength 𝐽∕ 𝐺. The eigenfrequencies and
he corresponding linewidths merge into the Eps under certain phase-
atching and balanced dissipative-coherent coupling strength condi-

ions. Notably, the reversed-dissipation mechanical mode implants a
xed phase factor at 𝜋2 and a tunable parametric phase 𝜃 into the dissi-
ative coupling terms. These Eps require the ratio between parametric
nd fixed phases to satisfy the phase-matching condition 𝜃∕ 𝜋2 = 2 𝑛 − 1 ,
 ∈ ℤ . 

Each integer 𝑛 specifies a group of Riemann surfaces accompa-
ied by one exceptional point. Odd (even) 𝑛 specifies odd (even)
ps, respectively. The Eps have been widely explored in coupled
wo-component systems, but usually only show a single exceptional
oint [71–83] . In this work, as shown in Fig. 2 , periodical Riemann
heets and odd-even Eps occur when the phase-matching condition
s satisfied. In addition to the reported schemes such as control-
ing the frequency detuning [84] and the decay rates [85] , we pro-
ose the use of an in-situ tunable phase 𝜃 to observe the Riemann
heet. 

The transmission spectrum is a powerful tool to observe energy level
volution, as well as the emergence of Eps. Considering a probe signal
with frequency 𝜔 𝑝 ) input from port 1, the quantum Langevin equa-
ions can be expressed as 

̇  = − ( 𝑖𝛿 + 𝜅) 𝑎 + 

(
𝐽e − 𝑖𝜃 − 𝑖𝐺 

)
𝑏 + 

√
Γ𝑎 in 

𝑏̇ = − ( 𝑖𝛿 + 𝜅) 𝑏 + 

(
𝐽e 𝑖𝜃 − 𝑖𝐺 

)
𝑎 (6) 

he steady-state solutions of Eqs. 6 are 

𝑎 ⟩ = 

( 𝑖𝛿 + 𝜅) 
√
Γ𝑎 1 , in 

( 𝑖𝛿 + 𝜅) 2 − 

(
𝐽e − 𝑖𝜃 − 𝑖𝐺 

)(
𝐽e 𝑖𝜃 − 𝑖𝐺 

)

(a) Supermode frequencies (real parts of 𝜆± ) of Eq. 5 versus phase factor 𝜃 and 
∕ 𝜅i = 10 for the calculation. The cavity internal decay rate can be 𝜅𝑖 = 13 kHz 

amiltonian (2) . The dissipation rate of the mechanical mode is set to 𝛾∕ 𝐺 = 50 , 
parts of Eq. 5 versus phase factor 𝜃 with 𝐽∕ 𝐺 = 0 . 5 ( blue ) , 1 ( black ) , 1.5 ( brown ) , 
ks the odd (even) Eps. 
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H  
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(
𝐽e 𝑖𝜃 − 𝑖𝐺 

)√
𝜅𝑎 1 , in 

( 𝑖𝛿 + 𝜅) 2 − 

(
𝐽e − 𝑖𝜃 − 𝑖𝐺 

)(
𝐽e 𝑖𝜃 − 𝑖𝐺 

) (7) 

sing the input-output relationship 

 2 , out = 𝑎 1 , in − 

√
𝜅⟨𝑎 ⟩ (8)

he transmission spectrum for energy transfer from port 1 to 2 is given
y 

 21 = 

𝑎 2 , out 

𝑎 1 , in 
= 1 − 

𝜅( 𝑖𝛿 + 𝜅) 
( 𝑖𝛿 + 𝜅) 2 − 

(
𝐽e − 𝑖𝜃 − 𝑖𝐺 

)(
𝐽e 𝑖𝜃 − 𝑖𝐺 

) (9)

here 𝛿 = 𝜔 − 𝜔 𝑝 is the frequency detuning between cavity mode reso-
ance 𝜔 and frequency 𝜔 𝑝 of the input probe signal. 

Fig. 3 shows the transmission spectrum for a variety of dissipa-
ive couplings strengths. When the phase matching conditions are
ot satisfied, e.g., setting 𝜃∕ 𝜋2 = 2 𝑘 , 𝑘 ∈ ℤ for the plots in Fig. 3 a,
he eigenvalues are now reduced to 𝜆± ,𝜃= 𝑘𝜋 = 𝜔 ± 𝐺 − 𝑖 ( 𝜅 ± 𝐽 ) . In this
ase, the coherent ( 𝐺) and dissipative coupling ( 𝐽 ) strengths only
ffect the supermode eigenfrequency and linewidth, respectively. As
hown in Fig. 3 a, the eigenfrequency positions remain unchanged.
owever, the linewidths become wider with continuously increasing
ig. 3. The transmission spectrum S 21 is plotted for various dissipative 

oupling strengths. The phase is fixed at 𝜃∕ 𝜋
2 
= 2 𝑘, 𝑘 ∈ ℤ for (a), and 𝜃∕ 𝜋

2 
= 

 𝑛 − 1 , 𝑛 ∈ ℤ for (b), respectively. For each figure, from bottom to top (labelled 
y the arrow bar), the dissipative coupling strength increased from 0 to 1 . 5 𝐺
ith a step 0 . 1 𝐺. The red pentagram inside (b) marks Ep with phase-matching 
nd balanced dispersive and dissipative coupling strengths. The values for other 
arameters are the same as those used in Fig. 2 . 
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24 
issipative coupling strength, resulting in an asymmetric supermode
eadout. 

As discussed above, non-Hermitian degeneracy occurs and the Eps
an be observed when the phase-matching conditions are satisfied, viz.,
∕ 𝜋2 = 2 𝑛 − 1 , 𝑛 ∈ ℤ . Actually, as shown in Fig. 3 b, the energy-level at-
racts and further collapses into the exceptional points as the dissipa-
ive coupling increases until it equilibrates with the coherent coupling.
otably, the evolution of the energy spectrum does not depend on the
arity of Eps. 

. Parity dependent unidirectional photon transport 

Apart from energy-level attraction, we demonstrate that the Hamil-
onian becomes naturally unidirectional with cascaded-like interaction
erms at these Eps. We show in the latter that the parity of Eps will
reatly affect the direction of the unidirectional and chiral photon trans-
ort behavior. In particular, at odd Eps (i.e., when 𝑛 is an odd number),
he Hamiltonian in Eq. 3 becomes 

̃
 odd = ( 𝜔 − 𝑖𝜅) 

(
𝑎 †𝑎 + 𝑏 †𝑏 

)
+ 2 𝐺𝑎 †𝑏 (10)

owever, for even Eps (i.e., when 𝑛 is an even number), the Hamiltonian
ecomes 

̃
 even = ( 𝜔 − 𝑖𝜅) 

(
𝑎 †𝑎 + 𝑏 †𝑏 

)
+ 2 𝐺𝑏 †𝑎 (11)

qs. 10 and 11 are  ( )-inversion asymmetry. Thus, energy transfers
rom mode 𝑎 to 𝑏 should be unidirectional. In particular, the direction
f nonreciprocal photon transport depends on the parity of the phase-
atch factor 𝑛 . 

To demonstrate how the parity of the Eps affects the photon transport
roperties, we take ports 1 and 4 as an example to study its transmission
pectrum. The corresponding transmission coefficient is 

 41 = 

𝑎 4 , out 

𝑎 1 , in 
= 

𝜅
(
𝐽e 𝑖𝜃 − 𝑖𝐺 

)
( 𝑖𝛿 + 𝜅) 2 − 

(
𝐽e − 𝑖𝜃 − 𝑖𝐺 

)(
𝐽e 𝑖𝜃 − 𝑖𝐺 

) (12)

nd the reversed photon transmission (from port 4 to 1) is given by 

 14 = 

𝑎 1 , out 

𝑎 4 , in 
= 

𝜅
(
𝐽e − 𝑖𝜃 − 𝑖𝐺 

)
( 𝑖𝛿 + 𝜅) 2 − 

(
𝐽e 𝑖𝜃 − 𝑖𝐺 

)(
𝐽e − 𝑖𝜃 − 𝑖𝐺 

) (13)

Fig. 4 a shows the transmission spectrum between ports 1 and 4 for
our typical phase-factors. When 𝜃∕ 𝜋2 = 2 𝑘, 𝑘 ∈ ℤ [as an example with
 = (0 , 1) and shown in Fig. 4 a], photons transfer evenly and recipro-
ally between ports 1 and 4. This can be physically understood by re-
alling the eigenvalues evolution from Eq. 5 , which now are further
implified to 𝜆± ,𝜃= 𝑘𝜋 = 𝜔 ± 𝐺 − 𝑖 ( 𝜅 ± 𝐽 ) . It is obvious that the coherent
oupling shifts the eigenfrequency and the dissipative coupling alters
he linewidth. As a result, destructive interference does not occur and
he photons can evenly transport between ports 1 and 4. In contrast,
s phase matching conditions are satisfied, viz., 𝜃∕ 𝜋2 = 2 𝑛 − 1 , 𝑛 ∈ ℤ , de-
tructive interference occurs and the photon transfer between ports 1
nd 4 becomes nonreciprocal. As an example with 𝑛 = (1 , 2) and shown
n Fig. 4 a, the photon transfer becomes totally unidirectional at the Eps.

It is notable that the direction for unidirectional photon transfers is
ow determined by the parity of the phase-match factor 𝑛 . More specif-
cally, when 𝑛 is odd, as an example 𝑛 = 1 corresponding to 𝜃∕ 𝜋2 = 1 ,
he photon transports between ports 1 and 4 are plotted and shown
n Fig. 4 a. It clearly shows that the photons transfer from port 4 to 1
 4 ⇒ 1 ) but are totally forbidden in turn ( 1 ⇏ 4 ). When 𝑛 is even, the
xact opposite transport behaviors are presented. As an example 𝑛 = 2
orresponding to 𝜃∕ 𝜋2 = 3 , the unidirectional performance becomes in-
erted. The photons only transfer from port 1 to 4 ( 1 ⇒ 4 ) but are totally
orbidden in turn ( 4 ⇏ 1 ). 

In addition to the unidirectional transfer with balanced coherent and
issipative couplings, the more general photon transmission is presented
n Fig. 4 b by plotting |𝑆 14 |, and |𝑆 41 | versus both the ratio 𝐽∕ 𝐺 and
hase-factor 𝜃. At Eps, photon transfer becomes ideally unidirectional.
he direction is parity-dependent on 𝑛 . Around these Eps, although the
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Fig. 4. Nonreciprocal photon transmission. (a) Transmission spectrum from 

port i to j defined as |𝑆 𝑗𝑖 | = |𝑎 j , out ∕ 𝑎 i , in | are plotted versus probe detunings 𝛿
for 𝜃∕ 𝜋

2 
= (0 , 1 , 2 , 3) with 𝐽 = 𝐺. Blue-solid (green-dashed) curves represent the 

transmission |𝑆 41 | ( |𝑆 14 |), respectively. (b) 3D plot of the transmission coeffi- 
cients |𝑆 41 | and |𝑆 14 | versus 𝐽∕ 𝐺 and phase 𝜃 to show an ideal nonreciprocity 
(unidirection) at the odd or even Eps. 
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hoton transfer is not unidirectional, it is still nonreciprocal. The ob-
erved unidirectional energy transfer at the Eps can be understood by
he  -inversion-symmetry broken that is induced by destructive quan-
um interference between coherent and dissipative mode couplings. For
dd- 𝑛 , the energy coupling term 𝑏 †𝑎 is totally eliminated, but the cou-
ling rate for 𝑎 †𝑏 is enhanced by twice. For even- 𝑛 , the coupling term 𝑎 †𝑏

s totally eliminated by the destructive interference. However, the cou-
ling rate for 𝑏 †𝑎 is enhanced by twice. The parity of 𝑛 results in totally
pposite interference cancellation between the couplings of modes 𝑎 and
 , finally introducing parity-dependent unidirectional photon transfer. 

To clearly show how the mechanical mode decay rate affects the
hoton unidirectional transmission bandwidth, we plot the nonrecipro-
al area |𝑆 14 | − |𝑆 41 | at 𝜃 = 

𝜋

2 for various mechanical dissipation rates
. Because the adiabatic approximation is not valid for the low me-
hanical dissipation case, in Fig. 5 , we use the full Hamiltonian method
or the calculation (see Supplementary Materials Section 3 for details).
s shown in Fig. 5 , the nonreciprocal bandwidth increases with the
echanical-mode dissipation rate 𝛾. In the reversed-dissipation regime,

.g., the purple-solid curve with 𝛾∕ 𝐺 = 10 , the nonreciprocal transmis-
ion bandwidth arrives at the level of the cavity linewidth. Upon further
ncreasing the mechanical decay rate, e.g., the green-solid curve with
25 
∕ 𝐺 = 50 , the nonreciprocal transmission bandwidth remains almost un-
hanged. Thus, in the reversed-dissipation regime, the bandwidth of the
nidirectional photon transfer is identical to the decay rate 𝜅. For previ-
us optomechanical approaches [37–62] , because the mechanical mode
ecay rate is always much smaller than both the coupling rate and cav-
ty decay rate, the nonreciprocal transmission bandwidth is limited to
he low dissipation mechanical mode, as shown by the blue curve in
ig. 5 . In our scheme, the bandwidth of the unidirectional photon trans-
er at odd and even Eps can be improved to the level of the cavity decay
ates, e.g., on the order of megahertz for electromechanics or tens of
egahertz for optomechanics. 

. Chirality of the photon transport 

In the previous section, we use ports 1 and 4 as an example to show
he parity-dependent unidirectional photon transport at the Eps. Similar
o mirrored transport, photon transmission between ports 3 and 2 can
lso be unidirectional at Eps but with totally opposite behaviors. The re-
ersed mechanical mode dissipation will not only break the  inversion
ymmetry (introducing nonreciprocal transmission as discussed above)
ut could also result in a broken  inversion symmetry. Thus, the chi-
al energy transfer could be accessible. As shown in Fig. 6 a, the energy
ransfers from port 1 to 4 can be defined as clockwise ↻ transfers. As a
irror image, energy transfer from ports 3 to 2 can be viewed as counter-

lockwise ↺ transfers. For odd 𝑛 , counterclockwise ↺ light transfers are
llowed, while clockwise ↻ photon transfers are forbidden. However,
or even 𝑛 , the situation becomes opposite, i.e. ↻ is allowed, while ↺ is
orbidden. We can define a chirality as 𝛼 = ( |𝑆 41 | − |𝑆 23 |)∕( |𝑆 41 | + |𝑆 23 |) .
s shown in Fig. 6 b, the chirality 𝛼 is plotted as a function of phase 𝜃
nd its corresponding phase-matching number 𝑛 . The extreme chirality
= ±1 depends on the parity of integer 𝑛 . 

. Parity-dependent chiral circulator at the high-order 

xceptional points 

We now extend our scheme to the three-mode case, as shown in
ig. 7 , where every two modes are coupled with both coherent and dis-
ipative couplings. For the three-mode case, the Hamiltonian is 

 = ( 𝜔 − 𝑖𝜅) 
(
𝑎 †𝑎 + 𝑏 †𝑏 + 𝑐 †𝑐 

)
+ 

(
𝑖𝐽e − 𝑖𝜃 + 𝐺 

)
𝑎 †𝑏 + 

(
𝑖𝐽e 𝑖𝜃 + 𝐺 

)
𝑏 †𝑎 

+ 

(
𝑖𝐽e − 𝑖𝜃 + 𝐺 

)
𝑏 †𝑐 + 

(
𝑖𝐽e 𝑖𝜃 + 𝐺 

)
𝑐 †𝑏 

+ 

(
𝑖𝐽e − 𝑖𝜃 + 𝐺 

)
𝑐 †𝑎 + 

(
𝑖𝐽e 𝑖𝜃 + 𝐺 

)
𝑎 †𝑐 (14) 
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Fig. 6. (a) Schematic of the chirality of the system. Port 3 is the mirror image 
of port 1, while port 2 is the mirror image of port 4. (b) Chirality as a function of 
phase 𝜃 (bottom x-axis) and the corresponding phase-matching number 𝑛 (top 
x-axis). 
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imilar to the method in Supplementary Materials Section 3 , the corre-
ponding Langevin equations can be expressed as 

̇ = − 𝑖𝑀𝜇 + Γ𝜇in (15)

here 𝜇 = [ 𝑎, 𝑏, 𝑐] 𝑇 are bosonic annihilation operators and their input
oise operators are 𝜇in = [ 𝑎 in , 𝑏 in , 𝑐 in ] 𝑇 and Γ = diag [ 

√
κ, 
√
κ, 
√
κ] is the

amping matrix. The coefficient matrix is 

 = 

⎡ ⎢ ⎢ ⎣ 
𝜔 − 𝑖𝜅 𝑖𝐽e − 𝑖𝜃 + 𝐺 𝑖𝐽e 𝑖𝜃 + 𝐺 

𝑖𝐽e 𝑖𝜃 + 𝐺 𝜔 − 𝑖𝜅 𝑖𝐽e − 𝑖𝜃 + 𝐺 

𝑖𝐽e − 𝑖𝜃 + 𝐺 𝑖𝐽e 𝑖𝜃 + 𝐺 𝜔 − 𝑖𝜅

⎤ ⎥ ⎥ ⎦ (16)

he energy-levers are given by solving the eigenvalues of the coefficient
atrix, i.e., |𝑀 − 𝜆𝐼 | = 0 . Subsequently, we have 

′
1 = 𝜔 − 𝑖 Γ (17) 

′
± = 𝜔 − 𝑖 Γ ± 

√ (
𝐺 2 − 𝐽 2 

)
+ 𝑖𝐽𝐺 

(
e 𝑖𝜃 + e − 𝑖𝜃

)
(18) 

ere, 𝜅 represents the total loss of each mode. The eigenvalues in
qs. 17 and 18 indicate the possibility of three-order exceptional points
ppearing. 

As shown in Fig. 8 a, the eigenvalues are plotted as functions of dissi-
ative coupling strength 𝐽 under phase-matching conditions. All eigen-
alues collapse to a single value with balanced coherent and dissipative
ouplings. These three-order degenerate points are called high-order Eps
HEps). Subsequently, as shown in Fig. 8 b, the eigenvalues are plotted
s a function of parametric phase 𝜃 with 𝐽 = 𝐺. Clearly, the eigenvalues
oincide, and HEps occur only under phase matching conditions, i.e.,
atisfying 𝜃∕ 𝜋 = 2 𝑛 − 1 , 𝑛 ∈ ℤ . 
2 

26 
Solving the Langevin Eq. 15 in the frequency domain, we have 

( 𝜔 ) = 𝑖 ( 𝑀 − 𝜔 ) −1 Γ𝜇𝑖𝑛 ( 𝜔 ) (19) 

ubstituting Eq. 19 into the input-output relation, we can obtain 

𝑜𝑢𝑡 ( 𝜔 ) = 𝜇𝑖𝑛 ( 𝜔 ) − Γ𝜇( 𝜔 ) 

= [ 𝐼 − 𝑖 Γ( 𝑀 − 𝜔𝐼) −1 Γ𝜇𝑖𝑛 ( 𝜔 ) 

= 𝑆( 𝜔 ) 𝜇𝑖𝑛 ( 𝜔 ) (20) 

here the transmission matrix 𝑆( 𝜔 ) is given by 

( 𝜔 ) = 𝐼 − 𝑖 Γ( 𝑀 − 𝜔𝐼) −1 Γ (21) 

efining 𝑋 = −[ 𝜅 + 𝑖𝛿] , 𝐽 1 = 𝐽e − 𝑖𝜃 − 𝑖𝐺, and 𝐽 2 = 𝐽e 𝑖𝜃 − 𝑖𝐺, we can ob-
ain 

( 𝜔 ) = 

𝜅

Λ

⎛ ⎜ ⎜ ⎝ 
𝑋 

2 − 𝐽 1 𝐽 2 + 1 𝐽 2 2 − 𝐽 1 𝑋 𝐽 2 1 − 𝐽 2 𝑋 

𝐽 2 1 − 𝐽 2 𝑋 𝑋 

2 − 𝐽 1 𝐽 2 + 1 𝐽 2 2 − 𝐽 1 𝑋 

𝐽 2 2 − 𝐽 1 𝑋 𝐽 2 1 − 𝐽 2 𝑋 𝑋 

2 − 𝐽 1 𝐽 2 + 1 

⎞ ⎟ ⎟ ⎠ (22)

here Λ = 𝑋 

3 + 𝐽 3 1 + 𝐽 3 2 − 3 𝑋𝐽 1 𝐽 2 . Hence, the transmission coefficient
rom mode 𝑖 to mode 𝑗 is given by the element |𝑆 𝑗𝑖 |. We have 

𝑆 21 | = |𝑆 32 | = |𝑆 13 | = | 𝜅
Λ
( 𝐽 2 1 − 𝐽 2 𝑋) | (23) 

= 

|||𝜅{( 𝐽e 
− 𝑖𝜃 − 𝑖𝐺) 2 + ( 𝐽e 𝑖𝜃 − 𝑖𝐺)[ 𝜅 + 𝑖 (Δ − 𝜔 )]} 
𝑋 

3 + 𝐽 3 1 + 𝐽 3 2 − 3 𝑋𝐽 1 𝐽 2 
|||

𝑆 12 | = |𝑆 23 | = |𝑆 31 | = | 𝜅
Λ
( 𝐽 2 2 − 𝐽 1 𝑋) | (24) 

= 

|||𝜅{( 𝐽e 
𝑖𝜃 − 𝑖𝐺) 2 + ( 𝐽e − 𝑖𝜃 − 𝑖𝐺)[ 𝜅 + 𝑖 (Δ − 𝜔 )]} 
𝑋 

3 + 𝐽 3 1 + 𝐽 3 2 − 3 𝑋𝐽 1 𝐽 2 
|||
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Fig. 8. (a) Eigenvalues as a function of dissipation coupling strength 𝐽 under 
phase-matching conditions, viz., 𝜃∕ 𝜋

2 
= 2 𝑛 − 1 where 𝑛 ∈ ℤ . (b) Eigenvalues as 

a function of parametric phase 𝜃 with balanced coherent and dissipative cou- 
plings, viz., 𝐽 = 𝐺. The three-order exceptional points (abbreviated as HEPs) are 
marked by dashed arrows. The green (blue) arrows mark the odd (even) HEps 
with odd (even) phase-matching factor 𝑛 , respectively. 
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Obviously, the parity of integer 𝑛 also affects energy transfer in be-
ween this three-mode system. At the odd HEps (corresponding to odd
hase-matching factor 𝑛 ), the Hamiltonian becomes 

 = ( 𝜔 − 𝑖𝜅) 
(
𝑎 †𝑎 + 𝑏 †𝑏 + 𝑐 †𝑐 

)
+ 2 𝐺 

(
𝑎 †𝑏 + 𝑏 †𝑐 + 𝑐 †𝑎 

)
(25)

he cascade-coupling terms in the above Hamiltonian indicate circu-
ar energy transfer. At these odd HEps, energy transfers counterclock-
ise along 𝑎 ⇒ 𝑐 ⇒ 𝑏 ⇒ 𝑎 . In comparison, at these even HEps (corre-

ponding to even phase-matching factor 𝑛 ), the system Hamiltonian
ecomes 

 = ( 𝜔 − 𝑖𝜅) 
(
𝑎 †𝑎 + 𝑏 †𝑏 + 𝑐 †𝑐 

)
+ 2 𝐺 

(
𝑏 †𝑎 + 𝑐 †𝑏 + 𝑎 †𝑐 

)
(26)

he energy transfers clockwise along 𝑎 ⇒ 𝑏 ⇒ 𝑐 ⇒ 𝑎 . 
Fig. 9 shows the transmission coefficient |𝑆 𝑗𝑖 | (from port 𝑖 to port

) at odd or even HEps. The device featured a parity-dependent circu-
ator: (i) energy transfers counterclockwise (i.e., port 2 ⇒ 1 , port 1 ⇒ 3 ,
nd port 3 ⇒ 2 ) at odd HEps; (ii) energy transfers clockwise (i.e., port
 ⇒ 3 , port 3 ⇒ 1 , and port 1 ⇒ 2 ) at even HEps. Around the HEps, en-
rgy transfer clockwise and counterclockwise is still nonreciprocal but
ith smaller isolation. Nevertheless, at 𝜃∕ 𝜋2 = 𝑘 , where 𝑘 ∈ ℤ , clock-
ise and counterclockwise energy transfers are exactly the same, and

he nonreciprocal property disappears. 
Nonreciprocal microwave transport [54] and directional amplifica-

ion [58] have been realized in multimode superconducting cavity elec-
27 
romechanical devices. Optical nonreciprocal transmission has been ex-
erimentally demonstrated in silica microtoroid [47,48,86] and optome-
hanical crystal [46] multimode cavity optomechanical devices. These
re ideal platforms for the experimental realization of our proposal. The
oherent coupling between the cavity modes could be tuned by chang-
ng the distance between the fiber waveguide and the optical microcav-
ty [47,48,86] or by changing the coupling capacitance (mutual induc-
ance) of superconducting circuits [54,58] . The key to the experimental
ealization is to achieve the inversion of the dissipation rate between
he optical cavity and the mechanical modes. Recent experimental stud-
es on non-Hermitian cavity optomechanics have shown that the decay
ates of aluminum drums [63] , silica microspheres [64] , and mechanical
esonators can be much larger than the decay rate of each correspond-
ng cavity resonator operating in the microwave or optical frequency
ands. Through laser injection of the drum resonator [87] , or exploita-
ion of the gigahertz-frequency travelling acoustic wave mode [86] , the
ecay rates of the mechanical resonators could be further increased to
erval megahertz, which is dozens of times the dissipation rate of the
orresponding microwave and optical cavity modes. Engineering the
ecay rates of these mechanical oscillators allows the experimental re-
lization of our proposal in both the microwave and optical frequency
omains. 

. Conclusion 

In this work, we demonstrate broadband nonreciprocal and chiral
hoton transmission in a reversed-dissipation cavity optomechanical sys-
em. We utilize a highly dissipative mechanical mode to endow the cav-
ty modes with dissipative coupling with two kinds of phase factors. By
teering the relative phase between the tunable parametric and fixed
issipative phases, destructive interference can occur between the co-
erent and dissipative couplings and the energy level exhibits periodic

iemann-sheets with odd and even Eps. 
At these Eps, the destructive interference breaks both  - and -

nversion symmetries. Subsequently, the photon transmission exhibits
onreciprocity and chirality . Moreover, reversing the dissipations of op-
ical and mechanical modes allows the nonreciprocal and chiral band-
idth to be dictated by the cavity linewidth, which makes the broad-
and on-chip isolator accessible. Notably, the direction for unidirec-
ional photon transfers in our proposal is determined by the parity of the
hase-match factor 𝑛 . Odd and even Eps result in exactly opposite direc-
ions, so they can be reversed by adjusting the parity of the phase factor
 . Extending the scheme to a multiresonator coupled system, three-order
ps are observed, and a parity-dependent circulator can be constructed.
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Our proposal also provides an in-situ tunable parametric phase in
ddition to controlling the detunings or decay (gain) rates of the cavity
odes [71–85,88] to control the photon transfer. The revealed cooc-

urrence of nonreciprocity and chirality will lead to the new direction
f research and development of on-chip optical rectifier devices such
s topology-protected photon diodes and circulators with new function-
lities. Our findings have important implications for quantum informa-
ion such as building directional quantum interfaces, cascaded quantum
etworks, and topological-protected state transfer and storage. Finally,
he chirality associated with this scheme is also an important concept in
odern physics. In quantum optics, with the rapid development of tech-
ologies [89–91] , many essential and intriguing quantum many-bodies
rise from chiral interfaces and bring about the research field of chi-
al quantum optics [92] . Hence, this scheme has the potential to study
uantum many-body physics that are unconventional from the perspec-
ive of condensed-matter physics. 
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