

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202001589

A Dual-Excitation Decoding Strategy Based on NIR Hybrid Nanocomposites for High-Accuracy Thermal Sensing

Shaohua Yu, Jin Xu, Xiaoying Shang, Wei Zheng, Ping Huang, Renfu Li, Datao Tu,* and Xueyuan Chen*

Supporting Information

A Dual-Excitation Decoding Strategy Based on NIR Hybrid Nanocomposites for High-Accuracy Thermal Sensing

Shaohua Yu, ‡ Jin Xu, ‡ Xiaoying Shang, Wei Zheng, Ping Huang, Renfu Li, Datao Tu,* and Xueyuan Chen*

Supplementary Figures

Figure S1. XRD patterns of NaLuF₄:Gd³⁺/Nd³⁺@NaGdF₄ nanocrystals (NCs) and PbS@CdS@ZnS quantum dots (QDs). All diffraction peaks match well with the standard patterns of hexagonal phase of NaGdF₄ (PDF#27-0699) and cubic phase of PbS (PDF#05-0592), respectively.

Figure S2. Normalized photoluminescence (PL) intensity at 1057 (a) and 863 nm (b) corresponding to ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ and ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ transitions of Nd³⁺ as a function of temperature, respectively. It can be seen that the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}/{}^{4}I_{9/2}$ emissions of Nd³⁺ remain virtually unaffected by the temperature changes in the 35-55 °C range. Data were presented as average ± standard deviation from three independent measurements.

Figure S3. Energy diagram of Nd³⁺ ions. The energy gap between ${}^{4}F_{3/2}$ and its nearest lower level ${}^{4}I_{15/2}$ is as large as ~ 5500 cm⁻¹, thus the multiphonon relaxation process from ${}^{4}F_{3/2}$ to ${}^{4}I_{15/2}$ level is negligible. Note that the thermal quenching coefficient for the ${}^{4}F_{3/2}$ level itself due to thermal population to its upper ${}^{4}F_{5/2}$ lever can be approximately estimated to be $1/[A \cdot \exp(-E_a/K_bT) + 1]$ using the Arrhenius thermal quenching model, where *A* is constant, *E*_a is the energy gap between ${}^{4}F_{3/2}$ and ${}^{4}F_{5/2}$, *K*_b is Boltzmann constant. Here, the *E*_a is ~ 1100 cm⁻¹ (*i.e.* ~ 137 meV), which is much larger than thermal activation energy of at room temperature (~ 25 meV). As such, the PL intensity of ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}/{}^{4}I_{9/2}$ transitions of Nd³⁺ in fluoride NCs remains virtually unaffected by the temperature changes from 35 to 55 °C.

Figure S4. (a) Absorption spectrum of QDs (orange line) and PL excitation (PLE) spectrum of Nd³⁺ doped NCs (blue line). (b) PL emission spectra of NCs under excitations at 808 (orange line) and 830 nm (green line), respectively.

Figure S5. A schematic diagram of light-matter interaction including reflection, refraction, absorption and scattering. Under the diffusion approximation,^[1] the intensity at a distance *z* from the tissue surface could be given in the form: $I = A \cdot \exp(\mu_t z) + B \cdot \exp(\mu_{eff} z)$ with $A + B = I_0$, where $\mu_t = \mu_a + \mu_s$ and $\mu_{eff} = \sqrt{3\mu_a[\mu_a + \mu_s(1 - g)]}$, *g* is the scattering anisotropic factor, μ_a is the absorption coefficient and μ_s is the scattering coefficient.

Figure S6. PL intensity versus time for the hybrid nanocomposites dispersion in water (~ 5 mg mL⁻¹) under 808-nm excitation with a power density of ~ 8.3 (a) and ~ 17 W cm⁻² (b), respectively, which demonstrated the good stability of the hybrid nanocomposites thermometers.

Figure S7. Reversibility of the hybrid nanocomposites thermometers over a span of 16 cycles of heating (55 °C) and cooling (35 °C) processes. This indicates that the optical properties of hybrid nanocomposites are fully reversible without any observable thermal hysteresis in the temperature range of 35-55 °C.

SUPPORTING INFORMATION

Figure S8. Photograph of pork tissue for the *ex vivo* experiments.

Figure S9. (a) Photograph of experimental setup for the *ex vivo* experiment consisting of direct injection of hybrid nanocomposites thermometers into pork tissue. (b) Calculated local temperatures in pork tissue that was placed on a heating device dynamically set at different temperatures in the range of 30-52 °C. Data were presented as average \pm standard deviation from three independent measurements.

Reference

[1] M. H.Niemz, Laser-Tissue Interactions, Springer, Berlin Heidelberg New York, 2003.