Eu³⁺-Doped In₂O₃ Nanophosphors: Electronic Structure and Optical Characterization

Qingbo Xiao, Yongsheng Liu, Liqin Liu, Renfu Li, Wenqin Luo, and Xueyuan Chen*

Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

Received: March 23, 2010; Revised Manuscript Received: April 8, 2010

Rare-earth ion-doped semiconducting nanocrystals have attracted extensive attention due to the ability to tailor their optical properties via size control and to achieve efficient luminescence through the host sensitization. A new type of nanophosphor based on Eu^{3+} -ion-doped In_2O_3 nanocrystals, synthesized via a facile solvothermal method, shows intense and well-resolved intra4f emissions of Eu^{3+} upon bandgap excitation. Optical properties of Eu^{3+} occupying two crystallographic sites (C₂ and S₆) are systematically investigated by means of high-resolution emission and excitation spectra at 10–300 K. The crystal-field (CF) analysis and Judd–Ofelt (JO) intensity calculation of Eu^{3+} at C₂ site yield relatively large CF strength and JO intensity parameters, indicating the good optical performance of this nanophosphor. Due to a small filling factor (0.43) of the In_2O_3 nanocrystals, the radiative lifetime of 5D_0 of Eu^{3+} is found to be significantly affected by the surrounding media with various refractive indices, which is about 3 times longer than that in the submicrometer counterparts. Furthermore, as compared to the submicrometer counterparts, an enhanced host-to- Eu^{3+} energy transfer with higher quenching temperature is observed due to more effective photon-induced carrier localization and trapping around Eu^{3+} in nanocrystals.

1. Introduction

Recently, rare-earth (RE)-doped nanocrystals and nanocomposites have gained much research interest due to their unique optical properties and potential applications in many technical fields.¹⁻⁷ Indium sesquioxide (In₂O₃) is a wide bandgap semiconductor (direct bandgap energy of $\sim 2.9-3.2 \text{ eV}^{8-10}$) and a good candidate as a host material for RE ions because of its good mechanical, optical, and thermal properties. In₂O₃ has a large exciton Bohr radius of 2.14 nm,¹¹ thus optical properties of RE ions incorporated in very small In₂O₃ nanocrystals are expected to be modified due to quantum confinement effects. It is also anticipated that RE luminescence can be efficiently sensitized by exciton recombination in In2O3 nanocrystals. Optical properties of In₂O₃:RE³⁺ microstructures^{12,13} and nanopowders¹⁴⁻¹⁶ have been reported recently. Kim et al.¹³ and Choi et al.¹⁶ observed Er^{3+} emission around 1.54 μ m in In₂O₃: Er³⁺ under direct excitation of Er³⁺ ions. The Eu³⁺ luminescence was observed in In₂O₃:Eu³⁺ quantum dots (QDs)¹⁵ upon indirect excitation above 350 nm at room temperature, due possibly to the host sensitization. However, the above luminescence lines of Eu³⁺ were broad (full width at half-maximum (fwhm) of ~ 9 nm for the 614-nm peak) and weak, indicating that the Eu^{3+} ions were probably located at the surface (or near the surface) of In2O3 nanocrystals. Antic-Fidancev et al.12 observed the resolved emission lines of Eu³⁺ in In₂O₃ polycrystalline powders in the 1990s, but the emission spectra presented were weak, and only 21 levels of the low-lying ${}^{7}F_{I}$ (J = 0, 1, 2, 3, 4) multiplets were identified. So far, no spectroscopic evidence for the incorporation of Eu³⁺ into In₂O₃ nanocrystals has been presented. A detailed study of optical spectroscopy of Eu³⁺ incorporated into lattice sites of In₂O₃ nanocrystals, such as luminescence dynamics, crystal-field (CF) analysis and Judd-Ofelt (JO) intensity calculation, is still lacking. A comprehensive investigation of the optical spectroscopy and luminescence dynamics may gain more insight into optical behaviors of RE ions in semiconducting nanocrystals.

In this paper, Eu^{3+} ion-doped In_2O_3 nanocrystals emerging as a new type of semiconducting nanophosphor were synthesized via a simple solvothermal method. High-resolution emission and excitation spectra of Eu^{3+} in In_2O_3 nanocrystals were measured, and the CF levels were determined. The energy level fitting, JO intensity parameters, and luminescence lifetimes were investigated in detail. Furthermore, host-to- Eu^{3+} energy transfer (ET) was demonstrated, and a possible ET mechanism was proposed.

2. Experimental Section

Nanoparticle Synthesis. Eu³⁺-doped In₂O₃ nanophosphors were prepared by a solvothermal method similar to the procedure reported by Xu et al.¹⁷ Typically, a mixture of 0.5 mmol In(NO₃)₃·6(H₂O) and Eu(CH₃COO)₃·3(H₂O) with a nominal molar ratio of Eu/In 3.0 at.% was dissolved in 25 mL ethanol, and then 6 mL oleic acid was added dropwise under vigorous stirring to afford the transparent solution. The precursor solution was transferred into a 40 mL Teflon-lined autoclave and maintained at 180 °C for 24 h. After being cooled to room temperature naturally, the brown precipitates were collected and washed with ethanol several times, dried at 60 °C for 12 h, and finally annealed at 400, 600, 800, and 1000 °C for 2 h, respectively, to yield the final products. For comparison, pure In₂O₃ nanocrystals were prepared using the same procedure followed by annealing at 600 °C for 2 h.

Characterization. The chemical compositions of the final products were measured by induction-coupled plasma (ICP) analysis (Ultima2, Jobin Yvon). Powder X-ray diffraction (XRD) patterns were collected using a PANalytical X'Pert PRO powder diffractometer with Cu K α 1 radiation ($\lambda = 0.154$ nm). The morphology of the samples was characterized by a JEOL-2010 transmission electron microscope (TEM). Ultraviolet/

^{*} To whom correspondence should be addressed. E-mail: xchen@ fjirsm.ac.cn.

Figure 1. (a) XRD patterns of In_2O_3 :Eu³⁺ nanocrystals annealed at different temperatures. (b) TEM image, (c) high-resolution TEM image, and (d) SAED pattern of In_2O_3 :Eu³⁺ nanocrystals annealed at 600 °C.

visible (UV/vis) diffuse reflectance spectra were measured by Perkin-Elmer Lambda 900 UV/vis/NIR Spectrometer using BaSO₄ as a blank. Emission and excitation spectra and transient decays were recorded on an Edinburgh Instruments FLS920 spectrofluorimeter equipped with both continuous (450 W) and pulsed xenon lamps. For low temperature measurements, samples were mounted on a closed-cycle cryostat (10–350 K, DE202, Advanced Research Systems). For site-selective spectroscopy, the excitation (or emission) monochromator's slits were set as small as possible to maximize the instrumental resolution. The best wavelength resolution is 0.05 nm. The line intensities and positions of the measured spectra were calibrated according to the FLS920 correction curve and standard mercury lamp.

3. Results and Discussion

3.1. Crystal Structure and Morphology Characterization. The concentration of Eu³⁺ was determined to be 2.3 at % by an ICP emission spectrometer. Figure 1a shows the XRD patterns for In_2O_3 : Eu³⁺ nanoparticles annealed at different temperatures. These XRD diffraction peaks for all the samples can be exclusively indexed as cubic bixbyite In₂O₃ (JCPDS card No. 71-2194), indicating the presence of highly crystalline In₂O₃: Eu³⁺ nanocrystals without any other impurity phases such as Eu₂O₃. By means of the Debye–Scherrer equation, the average sizes of the In₂O₃:Eu³⁺ nanoparticles annealed at 400, 600, 800, and 1000 °C are estimated to be 14, 21, 48, and 110 nm, respectively. The particle size of In2O3:Eu3+ nanoparticles heated at 600 °C decreases slightly compared to that of pure In₂O₃ counterparts (~ 28 nm), which reveals that the incorporation of Eu^{3+} into In₂O₃ nanocrystals might restrain the nanocrystal growth to some extent. Hereafter, the In_2O_3 :Eu³⁺ (2.3 at %) samples annealed at 600 and 1000 °C will be referred to as the nanocrystals and the submicrometer counterparts of $In_2O_3:Eu^{3+}$, respectively.

The morphology of In_2O_3 :Eu³⁺ nanocrystals was characterized by TEM. As shown in Figure 1b, the TEM image shows that the In_2O_3 :Eu³⁺ nanocrystals are irregular spheres with the diameters ranging from 15 to 20 nm. The corresponding highresolution TEM image (Figure 1c) clearly demonstrates the high crystallinity of In_2O_3 :Eu³⁺ nanocrystals. Lattice fringes are very clear with an observed *d*-spacing of 0.413 nm, which is in good agreement with the lattice spacing for the (211) plane of cubic In_2O_3 . The selected area electron diffraction (SAED) pattern also reveals the polycrystalline nature of In_2O_3 :Eu³⁺ nanocrystals, and the diffraction rings in Figure 1d can be well indexed as (211), (222), (440), and (622) planes of cubic In_2O_3 .

3.2. Emission and Excitation Spectra. According to the crystal structure of In₂O₃, two distinct sites are expected for RE ions in the In lattice, namely, a low symmetry site of C₂ and a centrosymmetric site of S₆. As shown in Figure 2a, upon direct excitation from the ground state ${}^{7}F_{0}$ to ${}^{5}D_{2}$ of Eu ${}^{3+}(C_{2})$ at 465.1 nm, sharp and abundant emission lines of Eu³⁺ in In₂O₃ nanocrystals centered at 533.0, 580.4, 586.3, 611.0, 648.4, 709.4, 741.4, and 804.4 nm are observed at 10 K, which correspond to ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ (J = 0, 1, 2, 3, 4, 5, 6) transitions of $Eu^{3+}(C_2)$, respectively. The fwhm of the peak at 611.0 nm is ca. 0.78 nm, an order of magnitude narrower than that of the 614-nm peak in QDs.¹⁵ These emission lines of Eu^{3+} in In₂O₃ nanocrystals are totally different from that of Eu₂O₃¹⁸ polycrystalline powders in terms of line positions and shapes, suggesting that Eu³⁺ ions are incorporated in the In₂O₃ nanocrystals instead of the formation of Eu₂O₃ clusters. Figure 2b shows the excitation spectrum of In₂O₃:Eu³⁺ nanocrystals at 10 K. By monitoring the strongest emission peak of the forced electric dipole (ED) transition ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ of Eu³⁺ at 611.0 nm, sharp excitation peaks centered at 467.4, 528.2, and 580.4 nm are observed, which are attributed to the direct excitation of Eu³⁺ from the ground state ${}^{7}F_{0}$ to different ${}^{5}D_{J}$ (J = 2, 1, 0) multiplets, respectively. More interestingly, besides the direct excitation lines of Eu3+, an intense broad UV band centered at 350 nm that originates from the bandgap of In₂O₃ nanocrystals is also presented in Figure 2b, indicating that the Eu³⁺ emissions can be achieved via an efficient nonradiative ET process from the In₂O₃ host to Eu³⁺. Similar broad excitation bands centered at 364 nm are also observed in submicrometer counterparts (Figure S1 in the Supporting Information). The peaks of excitation bands are close to the bandgap values determined from UV/vis reflectance spectra (350 and 378 nm for In_2O_3 :Eu³⁺ nanocrystals and submicrometer counterparts, respectively, Figure S2). Because of the overlap between the conduction band of In₂O₃ nanocrystals and higher excited states of Eu³⁺, no excitation lines from ${}^{5}L_{6}$ or ${}^{5}D_{3}$ multiples of Eu³⁺ were detected in the excitation spectrum at 10 K. By contrast, weak ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ excitation lines of Eu³⁺ can be observed as the broad UV band becomes quenched above 200 K (inset of Figure 2b). On the basis of the high-resolution emission and excitation spectra at 10 and 250 K, 48 CF levels below 25500 cm⁻¹ of Eu³⁺ at the C₂ site of In₂O₃ have been located and assigned in Table 1, which agree well with the partial levels assigned by Antic-Fidancev et al.¹² Note that the energy levels of ${}^{5}L_{6}$, ${}^{5}D_{1,2}$, and $^{7}F_{5.6}$ of Eu³⁺ in In₂O₃ nanoparticles were not reported previously.

For Eu³⁺ ions at S₆ site, only magnetic dipole (MD) induced transitions are allowed, which obey the selection rule $\Delta J = 0$, ± 1 (except $J = 0 \rightarrow 0$). As assigned in Figure 3a, two emission lines corresponding to ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition of Eu³⁺(S₆) were observed upon bandgap excitation of In₂O₃:Eu³⁺ nanocrystals at 10 K. The CF splitting of ${}^{7}F_{1}$ for the S₆ site is determined to be 271 cm⁻¹. The peak at 593.8 nm is unusually strong due to coincident overlap with the Eu³⁺(C₂) emissions, as compared to the direct excitation of ${}^{7}F_{0} \rightarrow {}^{5}D_{2}$ of Eu³⁺(C₂) at 465.1 nm (Figure 3b). The intense Eu³⁺ emissions upon bandgap excitation further verify an efficient host-to-Eu³⁺ ET. By monitoring the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition of Eu³⁺(S₆) at 584.4 nm, two distinct

Figure 2. Optical spectra and luminescence decays of Eu^{3+} at C_2 site in In_2O_3 nanocrystals: (a) 10 K emission spectrum upon excitation at 465.1 nm; (b) 10 K excitation spectra by monitoring the ${}^5D_0 \rightarrow {}^7F_2$ transition at 611.0 nm; the inset shows the 250 K excitation spectrum in the region of 5L_6 ; (c) 10 and 300 K luminescence decays from 5D_0 excited at 465.1 nm by monitoring the emission at 611.0 nm; the inset shows the 10 K luminescence decay from 5D_1 excited at 465.1 nm by monitoring the ${}^5D_1 \rightarrow {}^7F_1$ transition at 532.5 nm; (d) 10–300 K excitation spectra by monitoring the emission at 611.0 nm.

excitation peaks from the ${}^{7}F_{0} \rightarrow {}^{5}D_{1}$ transition of Eu³⁺(S₆) were observed (Figure 3c). Unlike the case of Gd₂O₃:Eu³⁺ or Y₂O₃: Eu³⁺,¹⁹ ET between the sites of Eu³⁺(S₆) and Eu³⁺(C₂) were not observed in the samples. As shown in Figure 3e, the decay curve of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition of Eu³⁺(S₆) measured at 10 K deviates slightly from single exponential in the tail of long time. By fitting with biexponential function, the decay lifetimes are determined to be 13.6 (97.8%) and 16.2 ms (2.2%), respectively. The shorter lifetime component is found very close to that fitted with single exponential (13.8 ms). The very long luminescence lifetime from ${}^{5}D_{0}$ of Eu³⁺(S₆) is consistent with the fact that the transitions from the S₆ site are of MD nature.

3.3. CF Analysis. Generally, the CF interaction is relatively weak compared to electrostatic and spin–orbit coupling because the partially filled 4*f* shell is shielded by the filled 5*s* and 5*p* orbitals. The commonly used effective operator Hamiltonian is

$$H = H_{\rm FI} + H_{\rm CF} \tag{1}$$

where the free ion (FI) Hamiltonian can be expressed as

$$H_{\rm FI} = E_{\rm avg} + \sum_{k=2,4,6} F^k f_k + \zeta_f A_{\rm SO} + \alpha L(L+1) + \beta G(R_2) + \gamma G(R_7) + \sum_{i=2,3,4,6,7,8} T^i t_i + \sum_{h=0,2,4} M^h m_h + \sum_{f=2,4,6} P^f p_f \quad (2)$$

The physical meaning of these FI parameters has been described by Crosswhite and Carnall et al.^{20,21} The single-

particle CF Hamiltonian is expressed in Wybourne's notation,²²

$$H_{\rm CF} = \sum_{k,q} \operatorname{Re} B_q^k [C_q^k + (-1)^q \cdot C_{-q}^k] + i \operatorname{Im} B_q^k [C_q^k - (-1)^q \cdot C_{-q}^k]$$
(3)

The number of independent nonvanishing CF parameters is determined by the site symmetry. Due to the low site symmetry, all the independent CF parameters except B_0^k are complex, each having real and imaginary parts denoted by Re B_q^k and Im B_q^k , respectively. For Eu³⁺ ion at the C₂ site, kq = 20, 22, 40, 42, 44, 60, 62, 64 and 66, with a total number of 15 CF parameters. An axis rotation is introduced to make the imaginary part of B_2^2 equal to zero, which reduces the total number of independent CF parameters from 15 to 14.

The energy-level fitting was performed by means of the parametrization of an effective operator Hamiltonian using the *f*-shell empirical programs from Prof. M. F. Reid.²³ Detailed calculation scheme for Eu³⁺ ions at C₂ site has been described in Gd₂O₃:Eu^{3+,24} For In₂O₃:Eu³⁺ nanocrystals, the FI parameters of LaF₃:Eu³⁺²⁵ and CF parameters of In₂O₃:Eu³⁺¹² were used as starting values. First, those most reliable CF levels were fitted by using the truncated 4*f*⁶ wave functions and freely varying both the five FI parameters (E_{avg} , F^k , ζ_f) and the 14 CF parameters. The other FI parameters were fixed at the parameters of LaF₃:Eu³⁺; second, the above fit was finely tuned by introducing the remaining FI parameters or adding more CF levels of other multiplets such as those congested levels, or both; third, those uncertain CF levels were relocated or reassigned to avoid anomalously large root-mean-square (rms) deviation of

TABLE 1: Energy Levels of Eu^{3+} at the C_2 Site of In_2O_3 Nanocrystals

energy (cm^{-1})			
multiplet	exp	fit	$\Delta E \ (\mathrm{cm}^{-1})^a$
7 _E		2	
⁷ E.	173	184	-11
1	389	396	-7
	566	582	-16
$^{7}F_{2}$	866	852	14
2	900	879	21
	975	961	14
	1191	1172	19
	1422	1415	7
${}^{7}F_{3}$	1797	1803	-6
	1854	1867	-13
	1898	1908	-10
	1961	1963	-2
	2026	2037	-11
	2176	2178	-2
⁷ E.	2663	2234	_2
1.4	2003	2005	14
	2841	2851	-10
	3040	3039	1
	3085	3070	15
	3130	3128	2
	3219	3216	3
	3260	3252	8
	3283	3287	-4
${}^{7}F_{5}$	3742	3739	3
	3856	3853	3
	3912	3903	9
	3933	3924	9
	3999	3994	5
	4076	4078	-2
	4149	4089	-8
	4337	4342	-5
	4356	4358	-2
		4421	_
$^{7}F_{6}$	4798	4812	-14
		4819	
	5086	5104	-18
		5128	
		5141	
	5159	5143	16
		5405	
		5412	
		5520	
		5533	
		5696	
		5696	
⁵ D ₀	17229	17229	0
${}^{5}D_{1}$	18932	18910	22
	18968	18964	4
	19020	19048	-28
⁵ D ₂	21365	21372	-7
	21205	21378	2
	21395	21392	3
	21501	21403	11
	21301	∠1490 24152	11
		24133	
		242.27	
		24235	
		24261	
		24282	
		24291	
⁵ L ₆		24557	
		24595	

TABLE 1:	Continued
----------	-----------

	energy (cm ⁻¹)		
multiplet	exp	fit	$\Delta E \ (\mathrm{cm}^{-1})^a$
	24618	24632	-14
	24704	24697	7
		24703	
		24779	
		24829	
		25018	
		25239	
		25310	
	25329	25330	-1
	25406	25400	6
	25471	25466	5

Figure 3. 10 K emission spectra upon (a) bandgap excitation at 350 nm, and (b) direct excitation at 465.1 nm of $Eu^{3+}(C_2)$ in In_2O_3 nanocrystals. The inset shows the 10 K excitation spectra by monitoring (c) the ${}^5D_0 \rightarrow {}^7F_1$ (S₆) transition at 584.4 nm, and (d) the ${}^5D_0 \rightarrow {}^7F_2$ (C₂) transition at 611.0 nm. (e) 10 K luminescence decay from 5D_0 of $Eu^{3+}(S_6)$ by monitoring the emission at 584.4 nm upon excitation at 350 nm.

the fit; and finally the 19 free parameters were simultaneously varied to fit all CF levels we observed without the truncation of the 4*f*⁶ wave functions. The rms deviation of the final fit is only 13.8 cm⁻¹. The fitted energy levels are compared with experimental values in Table 1. The FI and CF parameters are listed in Table 2. The CF parameters of B_0^2 , Im B_0^2 , B_0^6 , Im B_2^6 , Im B_4^6 , and Im B_6^6 are significantly different from that reported by Antic-Fidancev et al.¹² as compared in Table 2, which is

TABLE 2: FI and CF Parameters of Eu^{3+} at the C₂ Site of In₂O₃ Nanocrystals (in cm⁻¹)^{*a*}

parameter	C ₂ (In ₂ O ₃)	$C_2 (In_2O_3)^b$	$C_2 (Y_2O_3)^c$
Eave	62791(56)		
F^{2}	80206(108)		90223
F^4	59968(774)		60257
F^6	41068(465)		44578
ξ	1313(3)		1320
ά	21.4		
β	-567		
γ	1500		
T^2	300		
T^3	40		
T^4	60		
T^6	-300		
T^7	370		
T^8	320		
M^0	2.1		
P^2	360		
B_0^2	-168(47)	-54	-276
B_{2}^{2}	-806(27)	-743	-740
B_0^4	-1206(21)	-1400	-1385
ReB_2^4	-1951(57)	-1803	-1431
ImB_2^4	-221(162)	-370	-509
ReB_4^4	1133(62)	1273	802
ImB_4^4	-271(243)	552	780
B_0^{6}	143(96)	398	304
ReB_2^6	452(68)	382	159
ImB_2^6	465(101)	271	198
ReB_4^{-6}	1124(68)	959	555
ImB_4^{6}	-313(219)	442	585
ReB_6^{6}	-30 (90)	-3	81
ImB_6^{-6}	-253(93)	254	66
rms ^d	13.8	3.9	10.3

^{*a*} Values in parentheses are errors in the indicated parameters which were freely varied in the fit. The other FI parameters were fixed at the parameters of LaF₃:Eu^{3+,25} ^{*b*} Reference 12. ^{*c*} Reference 26. ^{*d*} The *rms* deviation between the experimental and calculated energies was used as a figure of merit to describe the quality of a fit, with $rms = \sqrt{\Sigma(E_{exp} - E_{calc})^2/(N - P)}$, where N = 48, the number of levels fit, and P = 19, the number of parameters freely varied.

most probably due to much less experimental data included in their energy level fitting. In Antic-Fidancev et al.'s analysis, the experimental data were restricted to only 21 CF levels of the ⁷F_J (J = 0, 1, 2, 3, 4) multiplets, thus the reliability of the sixth-rank parameters is lower than that of the second- and fourth-rank parameters. The obtained CF parameter is also compared with that of cubic Y₂O₃:Eu³⁺²⁶ in Table 2. The FI and second-rank CF parameters of fitting results are close to that of Y₂O₃:Eu³⁺, but the other CF parameters differ appreciably in magnitude. Particularly, the Im B_4^4 , Im B_6^6 , and Re B_6^6 values of Eu³⁺ in In₂O₃ have opposite signs, indicating a different CF environment experienced by Eu³⁺ in the In₂O₃ host.

The scalar CF strength (*S*) that reflects the overall CF interaction in nanocrystals is calculated to be 790 cm⁻¹, according to Chang's definition:²⁷

$$S = \left(\frac{1}{3}\sum_{2,4,6}\frac{1}{2k+1}\sum_{q}|B_{q}^{k}|^{2}\right)^{1/2}$$
(4)

The CF strengths of Eu^{3+} ions in some common inorganic crystals with different site symmetries are compared in Table 3. The CF strength of Eu^{3+} in In_2O_3 host is relatively large, as shown in Table 3, which confirms the low site symmetry of

TABLE 3: CF Strengths of Eu³⁺ Ions in Different Hosts^a

host	symmetry	S (cm ⁻¹)
LaCl ₃	C_{3h}	192
LaF ₃	C_{2v}	346
KY_3F_{10}	C_{4v}	323
$LiYF_4$	S_4	379
Cs ₂ NaYCl ₆	O_h	498
YVO_4	D_{2d}	250
Lu_2O_2S	C_{3v}	395
LaAlO ₃	D_3	440
$Y_3Al_5O_{12}$	D_2	682
Gd_2O_3	C_2	662
Y_2O_3	C_2	673
Lu_2O_3	C_2	718
In_2O_3	C_2	790

 a Data of the CF strengths of Eu^{3+} in the hosts except $In_{2}O_{3}$ are from ref 24.

 Eu^{3+} in the lattice site of In_2O_3 . It is revealed that the CF strength of Eu^{3+} decreases with increasing ionic radius of the host cations for the M_2O_3 series (M = In, Lu, Y, Gd).^{24,28} In general, a lower site symmetry occupied by RE ions in a host gives rise to a larger CF strength.

3.4. JO Intensity Calculation. JO intensity parameters, in terms of Ω_t (t = 2, 4, 6), are crucial to evaluating the performance of the laser and luminescent materials.^{29,30} The JO intensity parameters $\Omega_{2,4,6}$ of Eu³⁺ at C₂ site of In₂O₃ nanocrystals can be calculated by a modified method originally proposed by Krupke.³¹ This method takes advantage of the fact that the emission intensities of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$, ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$, and ${}^{5}D_{0} \rightarrow {}^{7}F_{6}$ transitions are solely dependent on the Ω_{2} , Ω_{4} , and Ω_{6} parameters, respectively. Different from the method proposed by Krupke, the total transition rate (or lifetime) of ${}^{5}D_{0}$, instead of the calculated MD transition rate of ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, is used as a standard to determine the absolute values of $\Omega_{2,4,6}$ in this work. The radiative transition rates of ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ are determined as

$$A_{\rm tot}(J \to J') = A_{\rm ED}(J \to J') + A_{\rm MD}(J \to J') = \beta(J \to J')\tau_{\rm r}^{-1} \quad (5)$$

$$\beta(J \to J') = \frac{\int \lambda I_J(\lambda) \, d\lambda}{\sum_{J'} \int \lambda I_{J'}(\lambda) \, d\lambda} \tag{6}$$

where τ_r is the radiative lifetime of 5D_0 , with a value of 455 s^{-1} (see section 3.5), and $I_J(\lambda)$ is the observed luminescence intensity of the ${}^5D_0 \rightarrow {}^7F_J$ transition. The luminescence branching ratios (β) of the 5D_0 state were experimentally determined by integrating the emission bands in Figure 2a. Once the ED radiative transition rates of ${}^5D_0 \rightarrow {}^7F_J$ (J = 2, 4, 6) are determined, the JO intensity parameters $\Omega_{2,4,6}$ can be calculated using the following formula:

$$A_{\rm ED}(J \to J') = \frac{64\pi^4 e^2}{3h(2J+1)\bar{\lambda}^3} \frac{n(n^2+2)^2}{9} \sum_{t=2,4,6} \Omega_t |\langle \Phi J \\ \left\| U^{(t)} \right\| \Phi' J' \rangle|^2 \quad (7)$$

where *n* is the effective index of refraction for the nanocrystals, as will be discussed in section 3.5; $\overline{\lambda}$ is the mean wavelength of the emission band; $|\langle \Phi J || U^{(t)} || \Phi' J' \rangle ||^2$ represents the reduced

matrix elements (RMEs) of the unit tensor, which were calculated based on the intermediate-coupling wave functions derived from the energy-level fitting. Considering the case of no J-mixing, the three JO intensities $\Omega_{2,4,6}$ are determined to be 14.46, 3.92, and 0.29 (in units of 10^{-20} cm²), respectively. As listed in Table S1 (Supporting Information), the $\Omega_{2,4,6}$ parameters obtained are comparable to those values for Y2O3:Eu3+ or Gd_2O_3 :Eu³⁺ having the same crystal structures. The Ω_2 value of Eu³⁺ in In₂O₃ is rather large as compared to those in Table S1, which reflects the hypersensitivity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition and the low site symmetry occupied by Eu³⁺ in the In lattices. The RMEs of the unit tensor of Eu³⁺ in In₂O₃ nanocrystals were calculated by using the JJINT program provided by Prof. M. F. Reid.²³ Table S2 compares the values of $U^{(2)}$, $U^{(4)}$, and $U^{(6)}$ for Eu³⁺ in different hosts. The RMEs of In₂O₃:Eu³⁺ are close to those of Gd₂O₃:Eu³⁺ because of similar FI parameters adopted for both hosts. The value of $U^{(6)}$ for Eu³⁺ in the form of FI was anomalously larger than that in In₂O₃, presumably due to the truncation of the singlet and triplet components from the intermediate-coupling wave functions of Eu³⁺.³²

3.5. Luminescence Dynamics. The luminescence decays of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu³⁺(C₂) in In₂O₃ nanocrystals and submicrometer counterparts have been measured at 10 and 300 K. The decay curves of Eu³⁺ in In₂O₃ submicrometer counterparts fit well to a single exponential (Figure S3). The ${}^{5}D_{0}$ lifetime is determined to be 0.81 ms at 300 K and weakly dependent on the temperature. Thus, the observed ${}^{5}D_{0}$ lifetime of Eu³⁺ in In₂O₃ submicrometer counterparts can be approximately regarded as the radiative lifetime, considering the large energy gap between ${}^{5}\text{D}_{0}$ and its next low-lying ${}^{7}\text{F}_{6}$ (12000 cm⁻¹). Similar to the case of $Eu^{3+}(S_6)$, the decay from 5D_0 of Eu^{3+} in In_2O_3 nanocrystals at 10 K slightly deviates from single exponential in the tail upon direct excitation of the ${}^{7}F_{0} \rightarrow {}^{5}D_{2}$ transition at 465.1 nm (Figure 2c). By fitting with biexponential function, the luminescence lifetimes are determined to be 2.21 (96.9%) and 2.64 ms (3.1%), respectively. For comparison, the decay curve is also fitted using a single exponential function, and the lifetime is determined to be 2.23 ms. It can be seen clearly that the shorter lifetime component dominates the whole decay curve, which is generally consistent with that obtained from the single exponential fit. The longer lifetime component observed in the tail may be caused by the smaller In₂O₃:Eu³⁺ nanocrystals in our inhomogeneously size-distributed samples, as revealed in Y_2O_3 :Eu³⁺ nanocrystals previously.33 In view of their close values obtained from either single- or biexponential fit, hereafter, the intrinsic lifetime for ${}^{5}D_{0}$ of Eu³⁺ (C₂) at 10 K refers to that fitted with single exponential function. As shown in Figure 2c, the decay curve measured at 300 K deviates obviously from single exponential function. Similar nonexponential decay of Eu³⁺ in In₂O₃ nanocrystals was also observed at a concentration as low as 0.5 at %, thus the effect of concentration quenching on such decay deviation of Eu³⁺ could be ruled out. Since no photoluminescence (PL) of other sites is observed upon direct excitation of $Eu^{3+}(C_2)$, the nonexponential decay may be caused by a nonradiative ET process from Eu³⁺ ions to the neighboring defects that have close energy levels to the ⁵D₀ state. Such defects might be related to the oxygen vacancies formed in In₂O₃ nanocrystals.34 The decay curve at 300 K fits well to the Inokuti-Hirayama model:³⁵ $I(t) = I_0 \exp[-t/\tau_0 - C(t/\tau_0)^{1/2}],$ assuming the electric dipole-dipole interaction between donor and acceptor, where I(t) is the time-dependent PL intensity, I_0 is the initial intensity, C is a freely varied parameter, t is the time, and τ_0 is the intrinsic luminescence lifetime. The intrinsic lifetime of ${}^{5}D_{0}$ is fitted to be 2.20 ms at 300 K, which is very close to that measured at 10 K (2.23 ms). Vela et al.¹⁵ recently reported a relatively small ⁵D₀ lifetime (less than 0.6 ms) of Eu³⁺ in In₂O₃ QDs, which was synthesized via a high temperature injection method that might result in abundant defect states in the In₂O₃ host. Thus the remarkable reduction of the ⁵D₀ lifetime of Eu³⁺ in their samples may be caused by the strong nonradiative ET from Eu³⁺ to neighboring defect states. The decay curve of the ⁵D₁→⁷F₁ emission of Eu³⁺(C₂) in In₂O₃ nanoparticles was measured upon 465.1 nm excitation of the ⁷F₀→⁵D₂ transition at 10 K, and the ⁵D₁ lifetime is determined to be 27 (97.1%) and 31 μ s (2.9%) fitted with the biexponential function (inset of Figure 2c). The decay time of ⁵D₁ is sensitive to temperature and is reduced significantly with increasing temperature. As a result, the luminescence from ⁵D₁ vanished at 300 K.

The ${}^{5}D_{0}$ lifetime of Eu³⁺(C₂) in In₂O₃ nanocrystals is much longer than that of its submicrometer counterparts. There are many factors that may influence the ${}^{5}D_{0}$ radiative lifetime of Eu³⁺ in nanocrystals such as the nonsolid media³³ and the changes of lattice constants.³⁶ As shown in the following, the nonsolid medium surrounding the In₂O₃:Eu³⁺ nanoparticles with different effective indices of refraction (n_{eff}) affects the ${}^{5}D_{0}$ lifetime of Eu³⁺ most significantly. The radiative lifetime can be expressed as

$$\tau_{\rm r}^{-1} = \frac{64\pi^4 e^2}{3h(2J+1)\bar{\lambda}^3} [\chi_{\rm ED} \sum_{t=2,4,6} \Omega_t |\langle \Phi J || U^{(t)} || \Phi' J' \rangle|^2 + \chi_{\rm MD} |\langle \Phi J || M || \Phi' J' \rangle|^2] \quad (8)$$

where *M* is the MD moment for transition from *J* to *J'*, and χ_{ED} and χ_{MD} are the correction factors of the refractive index (*n*) for ED and MD transitions, respectively, with $\chi_{ED} = n(n^2 + n)$ $(2)^2/9$ and $\chi_{\rm MD} = n^3$. The wavelength-dependent refractive index, *n*, of cubic In₂O₃ was derived from the Cauchy formula³⁷ $n(\lambda, unit:$ nm) = $1.81 + 2.1 \times 10^4 / \lambda^2$. For In₂O₃ nanocrystals, the effective index of refraction $(n_{\rm eff})$ can be expressed as $n_{\rm eff} = n(\lambda)_{\rm In2O3} \cdot x$ + $(1 - x) \cdot n_{\text{med}}$, where $n(\lambda)_{\text{In2O3}}$ is the refractive index of In₂O₃ (1.866 at the wavelength of 611 nm), x is the filling factor showing what fraction of space is occupied by nanocrystals with the refractive index of $n(\lambda)_{In2O3}$, and $n(\lambda)_{med}$ is the refractive index of the medium.³³ We have measured the ⁵D₀ lifetimes of $Eu^{3+}(C_2)$ in In₂O₃ nanocrystals immersed in solvents with different refractive indices at 300 K. The solvents included methanol (CH₃OH, n = 1.329), ethanol (C₂H₅OH, n = 1.361), n-hexanol (CH₃(CH₂)₄CH₂OH, n = 1.418), carbon tetrachloride $(CCl_4, n = 1.460)$ and toluene $(C_6H_5CH_3, n = 1.497)$. The decay curves were all well fitted by the Inokuti-Hirayama model mentioned above. Figure 4 presents the dependence of the intrinsic radiative lifetime of 5D0 on the refractive index of medium (n_{med}) for Eu³⁺(C₂) ions in In₂O₃ nanocrystals. Apparently, the ${}^{5}D_{0}$ lifetime is significantly affected by the surrounding medium. The larger refractive index of the surrounding medium results in the smaller radiative lifetime of ⁵D₀. The experimental ⁵D₀ lifetimes for various media were fitted to eq 8, using x as a variable parameter. The filling factor was determined to be 0.43. Thus, it is clearly shown that the longer ${}^{5}D_{0}$ lifetime of Eu^{3+} in In₂O₃ nanocrystals than in submicrometer counterparts is mainly due to the change of the refractive index of the nonsolid surrounding medium.

3.6. Host-to-Eu³⁺ ET. The Eu³⁺ luminescence sensitized by In_2O_3 nanoparticles has attracted much attention for various material applications.^{14–16,38–40} The broad band centered at 350

Figure 4. Dependence of the ${}^{5}D_{0}$ lifetimes of $Eu^{3+}(C_{2})$ in $In_{2}O_{3}$ nanocrystals on the refractive index of the surrounding medium at 300 K.

Figure 5. An ET mechanism describing the sensitization of $\rm In_2O_3$ nanocrystals to $\rm Eu^{3+}$ ions. The dotted, straight, and dashed arrows denote multiphonon nonradiative transitions, radiative transitions, and ET processes, respectively.

nm in the excitation spectra as well as the intense Eu³⁺ emissions upon bandgap excitation indicate an efficient ET from the In2O3 host to Eu^{3+} ions. Previously, effective ET processes from In_2O_3 nanoparticles to Eu³⁺ embedded in the SiO₂ matrix were observed, which were argued to transfer via the O²⁻-Eu³⁺ charge transfer band³⁸ or defect states³⁹ instead of the direct transfer to the RE energy levels. Here, based on the optical properties of In₂O₃:Eu³⁺ nanocrystals we observed at temperatures between 10 and 300 K, a possible ET mechanism from In₂O₃ host to Eu³⁺ is proposed. As schematically plotted in Figure 5, the bandgap energy of In_2O_3 :Eu³⁺ nanocrystals is close to the energy levels of ${}^{5}L_{I}$ or ${}^{5}D_{4}$ of Eu³⁺ ions, which may facilitate the nonradiative ET from the In_2O_3 host to Eu^{3+} ions. Upon excitation above the bandgap, an electron-hole pair (carrier) is formed in the In₂O₃ host. The recombination of electron-hole pair will resonantly transfer its energy to the ⁵L_J or ${}^{5}D_{4}$ state of Eu³⁺, followed by nonradiative relaxation to ${}^{5}D_{1}$ and ${}^{5}D_{0}$ states of Eu³⁺, and then the characteristic red luminescence of Eu3+ is observed. Such ET mechanism is also applicable for In₂O₃:Eu³⁺ submicrometer counterparts, where the electron-hole pair may nonradiatively transfer its energy to Eu^{3+} via the lower CF levels of ${}^{5}L_{I}$ or ${}^{5}D_{4}$.

To further probe the host-to-Eu³⁺ ET efficiency, the excitation spectra of In₂O₃:Eu³⁺ nanocrystals were measured at various temperatures. As shown in Figure 2d, the intensity of the broad excitation band centered at 350 nm drastically decreases with the increase of temperature and is completely quenched at 250 K, which indicates the decrease of ET efficiency as the temperature increases. There are two main factors that may result in the observed thermal quenching: (1) nonradiative ET from the excited state of RE3+ ions to semiconductor bandgap or defect states, which is characterized by a remarkable decrease of RE³⁺ lifetime;⁴¹⁻⁴³ (2) nonradiative recombinations of electron-hole pairs near defects in the semiconductor host prior to their transfer to RE^{3+,44,45} As has been discussed in section 3.5, the ${}^{5}D_{0}$ lifetime of Eu³⁺ changes little at 10–300 K for In₂O₃:Eu³⁺ nanocrystals, thus the possibility of strong nonradiative ET from Eu³⁺ to In₂O₃ bandgap states or defects is excluded. Such thermal quenching of the excitation band at 250 K is very likely ascribed to nonradiative recombination of electron-hole pairs in In_2O_3 host, which may involve deep traps (such as oxygen vacancies) and Auger processes in In₂O₃. Interestingly, the quenching temperature of the broad excitation band in In₂O₃:Eu³⁺ nanocrystals is much higher than that of submicrometer counterparts (quenched at 150 K, Figure S1), indicating less sensitive temperature dependence of the hostto-Eu³⁺ ET in In₂O₃:Eu³⁺ nanocrystals. This high quenching temperature in In₂O₃:Eu³⁺ nanocrystals is presumably due to the effective restraint of ET from RE^{3+} to the surface defects, which may be caused by the existence of much more grain boundaries in In₂O₃:Eu³⁺ nanocrystals compared to that of its submicrometer counterparts. Likewise, such high thermal quenching temperature was also observed in LaPO₄:Eu³⁺ and \dot{Y}_2O_3 :Tb³⁺ nanostructures.^{46,47}

4. Conclusions

The optical spectroscopy and luminescence dynamics of Eu³⁺ in In₂O₃ nanocrystals, which were synthesized via a simple solvothermal method, have been systematically investigated at temperatures between 10 and 300 K. Forty-eight CF levels below 25500 cm⁻¹ of Eu³⁺ at the C_2 site of In_2O_3 have been experimentally determined for the first time. By means of the parametrization of an effective operator Hamiltonian including 19 freely varied FI and CF parameters, energy-level fitting yields a small standard deviation (13.8 cm⁻¹) from the experiments. It is revealed that the CF strength of Eu at the C_2 site is as large as 790 cm⁻¹. Different from that of Gd₂O₃:Eu³⁺ or Y₂O₃: Eu^{3+} , ET between the Eu^{3+} sites of S₆ and C₂ does not occur. On the basis of a modified JO calculation method for Eu^{3+} , the JO intensity parameters $\Omega_{2,4,6}$ have been determined to be 14.46, 3.92, and 0.29 (in units of 10^{-20} cm²), indicative of the good performance of nanophosphors. The luminescence lifetimes of ${}^{5}D_{0}$ of Eu³⁺(C₂) in In₂O₃ nanocrystals were measured to be 2.23 ms, which is about three times longer than that in submicrometer or bulk counterparts. It has been validated that the ${}^{5}D_{0}$ lifetime of $Eu^{3+}(C_2)$ depends critically on the surrounding medium of nanocrystals that have a filling factor of 0.43. Furthermore, as compared to the submicrometer counterparts, an enhanced hostto-Eu3+ ET with higher quenching temperature has been demonstrated in In₂O₃:Eu³⁺ nanocrystals due possibly to photoninduced carrier localization and trapping around Eu^{3+} . The comprehensive study of electronic structure and optical properties of Eu³⁺ in such novel nanophosphors are of great importance to material applications such as the fabrication of electroluminescence devices and luminescent nanobiolabels.

Acknowledgment. This work is supported by the Hundreds of Talents Program of the Chinese Academy of Sciences (CAS), Knowledge Innovation Program of CAS for Key Topics (No. KJCX2-YW-358), the NSFC (Nos. 10774143 and 10974200), the 973 and 863 programs of MOST (Nos. 2007CB936703 and 2009AA03Z430), Fujian Provincial Science Fund for Distinguished Young Scholars (No. 2009J06030), and the Key Project of Science and Technology Foundation of Fujian Province (No. 2007I0024).

Supporting Information Available: The excitation spectra of Eu³⁺ ions in In₂O₃ submicrometer counterparts; plot of $F(R)^2$ versus photon energy for direct transition of In₂O₃:Eu³⁺ nanocrystals annealed at different temperatures; luminescence decays from ⁵D₀ of Eu³⁺(C₂) in In₂O₃ submicrometer counterparts at 10 and 300 K; JO intensity parameters of Eu³⁺ ions in different hosts; RMEs of the unit tensor for Eu³⁺ ions in different hosts. This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

(1) Wang, Z. L.; Quan, Z. W.; Jia, P. Y.; Lin, C. K.; Luo, Y.; Chen, Y.; Fang, J.; Zhou, W.; O'Connor, C. J.; Lin, J. *Chem. Mater.* **2006**, *18*, 2030.

(2) Chen, W.; Zhang, J. Z.; Joly, A. G. J. Nanosci. Nanotechnol. 2004, 4, 919.

(3) Carlos, L. D.; Ferreira, R. A. S.; Bermudez, V. D.; Ribeiro, S. J. L. *Adv. Mater.* **2009**, *21*, 509.

(4) Zeng, J. H.; Su, J.; Li, Z. H.; Yan, R. X.; Li, Y. D. Adv. Mater. 2005, 17, 2119.

(5) Wang, F.; Liu, X. G. Chem. Soc. Rev. 2009, 38, 976.

(6) Wang, X.; Kong, X. G.; Yu, Y.; Sun, Y. J.; Zhang, H. J. Phys. Chem. C 2007, 111, 15119.

(7) Tanner, P. A.; Yu, L. J. Nanosci. Nanotechnol. 2008, 8, 1307.

(8) Walsh, A.; Da Silva, J. L. F.; Wei, S. H.; Korber, C.; Klein, A.; Piper, L. F. J.; DeMasi, A.; Smith, K. E.; Panaccione, G.; Torelli, P.; Payne,

D. J.; Bourlange, A.; Egdell, R. G. Phys. Rev. Lett. 2008, 100, 167402.
(9) Fuchs, F.; Bechstedt, F. Phys. Rev. B 2008, 77, 10.

(10) Bourlange, A.; Payne, D. J.; Egdell, R. G.; Foord, J. S.; Edwards,

P. P.; Jones, M. O.; Schertel, A.; Dobson, P. J.; Hutchison, J. L. Appl. Phys. Lett. 2008, 92, 092117.

(11) Liang, C. H.; Meng, G. W.; Lei, Y.; Phillipp, F.; Zhang, L. D. Adv. Mater. 2001, 13, 1330.

(12) Anticfidancev, E.; Aride, J.; Lemaitreblaise, M.; Porcher, P.; Taibi, M. J. Alloys Compd. 1992, 188, 242.

(13) Kim, H. K.; Li, C. C.; Barrios, P. J. J. Vac. Sci. Technol. A 1994, 12, 3152.

(14) Dutta, D. P.; Sudarsan, V.; Srinivasu, P.; Vinu, A.; Tyagi, A. K. J. Phys. Chem. C 2008, 112, 6781.

(15) Vela, J.; Prall, B. S.; Rastogi, P.; Werder, D. J.; Casson, J. L.; Williams, D. J.; Klimov, V. I.; Hollingsworth, J. A. J. Phys. Chem. C 2008, 112, 20246.

(16) Choi, Y. G.; Yu, S. M.; Chung, W. J. Chem. Phys. Lett. 2008, 461, 290.

(17) Xu, J. Q.; Wang, X. H.; Wang, G. Q.; Han, J. J.; Sun, Y. A. *Electrochem. Solid-State Lett.* **2006**, *9*, H103.

(18) Sheng, K. C.; Korenowski, G. M. J. Phys. Chem. 1988, 92, 50.

- (19) Buijs, M.; Meyerink, A.; Blasse, G. J. Lumin. 1987, 37, 9.
- (20) Carnall, W. T.; Goodman, G. L.; Rajnak, K.; Rana, R. S. J. Chem. Phys. 1989, 90, 3443.
- (21) Crosswhite, H. M.; Crosswhite, H. J. Opt. Soc. Am. B 1984, 1, 246.

(22) Wybourne, B. G. Spectroscopic Properties of Rare Earths; Interscience: New York, 1965.

(23) Reid, M. F. f-Shell empirical programs and examples. Private communication.

- (24) Liu, L. Q.; Chen, X. Y. Nanotechnology 2007, 18, 255704.
- (25) Carnall, W. T.; Goodman, G. L.; Rajnak, K.; Rana, R. S. A

systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. *Argonne National Laboratory Report No. ANL-88–8*, Argonne, Illinois, **1988**.

(26) Faucher, M. D.; Dexpert-Ghys, J. Phys. Rev. B 1981, 24, 3138.

(27) Chang, N. C.; Gruber, J. B.; Leavitt, R. P.; Morrison, C. A. J. Chem. Phys. 1982, 76, 3877.

(28) Antic-Fidancev, E.; Holsa, J.; Lastusaari, M. J. Alloys Compd. 2002, 341, 82.

(29) Ofelt, G. S. J. Chem. Phys. 1962, 37, 511.

(30) Judd, B. R. Phys. Rev. 1962, 127, 750.

(31) Krupke, W. F. Phys. Rev. 1966, 145, 325.

(32) Weber, M. J. Phys. Rev. 1968, 171, 283.

(33) Meltzer, R. S.; Feofilov, S. P.; Tissue, B.; Yuan, H. B. *Phys. Rev.* B **1999**, *60*, R14012.

(34) Zheng, M. J.; Zhang, L. D.; Li, G. H.; Zhang, X. Y.; Wang, X. F. Appl. Phys. Lett. 2001, 79, 839.

(35) Inokuti, M.; Hirayama, F. J. Chem. Phys. 1965, 43, 1978.

(36) Schmechel, R.; Kennedy, M.; von Seggern, H.; Winkler, H.; Kolbe, M.; Fischer, R. A.; Li, X. M.; Benker, A.; Winterer, M.; Hahn, H. J. Appl.

Phys. 2001, 89, 1679.
(37) Prathap, P.; Subbaiah, Y. P. V.; Devika, M.; Reddy, K. T. R. Mater.

(5)) Franap, F., Subbalan, T. F. V., Devika, M., Reddy, K. I. R. Mater. Chem. Phys. **2006**, 100, 375.

(38) Wan, N.; Xu, J.; Lin, T.; Zhang, X. G.; Xu, L. Appl. Phys. Lett. 2008, 92, 201109.

(39) Yu, Y. I.; Chen, D. q.; Wang, Y. s.; Huang, P.; Weng, F. y.; Niu, M. t. Phys. Chem. Chem. Phys. 2009, 11, 8774.

(40) Kudrawiec, R.; Podhorodecki, A.; Mirowska, N.; Misiewicz, J.; Molchan, I.; Gaponenko, N. V.; Lutich, A. A.; Gaponenko, S. V. *Mater. Sci. Eng.*, *B* **2003**, *105*, 53.

(41) Palm, J.; Gan, F.; Zheng, B.; Michel, J.; Kimerling, L. C. *Phys. Rev. B* **1996**, *54*, 17603.

(42) Kik, P. G.; deDood, M. J. A.; Kikoin, K.; Polman, A. Appl. Phys. Lett. 1997, 70, 1721.

(43) Coffa, S.; Franzo, G.; Priolo, F.; Polman, A.; Serna, R. Phys. Rev. B 1994, 49, 16313.

(44) Morishima, S.; Maruyama, T.; Akimoto, K. J. Cryst. Growth 2000, 209, 378.

(45) Nyein, E. E.; Hommerich, U.; Heikenfeld, J.; Lee, D. S.; Steckl, A. J.; Zavada, J. M. Appl. Phys. Lett. **2003**, 82, 1655.

(46) Yu, L. X.; Song, H. W.; Lu, S. Z.; Liu, Z. X.; Yang, L. M.; Wang, T.; Kong, X. G. *Mater. Res. Bull.* **2004**, *39*, 2083.

(47) Song, H. W.; Wang, J. W. J. Lumin. 2006, 118, 220.

JP102592Q