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ABSTRACT: The concept of hot carrier solar cells (HCSCs) has been
proposed as a promising yet elusive path toward high-performance photo-
voltaics (PV), capable of surpassing the Shockley−Queisser limit by recycling
energy that would otherwise be lost during thermalization. Lead halide
perovskites (LHPs) have emerged as highly promising materials for PV
applications. The reports of slow hot carrier (HC) cooling in these materials
have ignited discussions of their potential in realizing HCSCs. Here we
summarize the key findings regarding HC dynamics in LHPs, as revealed by
numerous studies using advanced time-resolved spectroscopies. We also
emphasize the interconnected mechanisms involved in HC cooling. In addition, we discuss the influence of nanostructuring
on HC cooling dynamics in LHPs and suggest that two-dimensional LHPs, with their inherent quantum well structure, might
exhibit modified phononic features and altered carrier−phonon coupling strength. We conclude by critically discussing the
prospects for HCSCs, taking into account our current understanding of HC cooling and excitation conditions under sunlight.

Extensive research has been conducted on renewable
energy sources to pave the way for a more sustainable
future, with photovoltaics (PV) emerging as a realistic

long-term solution.1,2 The power conversion efficiency (PCE)
plays a vital role in assessing the PV device quality and has
exhibited steady improvement over decades.3,4 However,
according to the Shockley−Queisser (SQ) limit the maximum
efficiency that conventional single-junction solar cells can
achieve is around 33%.5 Therefore, numerous strategies have
been proposed to overcome the SQ limit,6,7 including
multijunction cells,8−11 carrier multiplication processes12,13

(e.g., multiple exciton generation,14,15 singlet exciton fission,16

and quantum-cutting17), and hot carrier solar cells (HCSCs).18

From all possible loss mechanisms in the SQ model,19 a
significant share is related to the blue part of the solar spectrum
which excites significantly higher-energy charge carriers
compared to the optical band gap. The overflow of energy is
dissipated as heat in the material when these hot carriers (HCs)
relax to the band edge. One third of the energy is lost in this way
in the SQ model.7 Therefore, the fundamental idea of
HCSCs20−23 is to make use of this additional energy and to
extract photogenerated electrons and holes at energy higher
than the band gap. In this way, less energy is converted to heat.
In HCSCs this is achieved via the “heat” “warming up” of the
cold carriers. These are the carriers that are “cooled” down
below the extraction energy and the carriers that are excited by
the lower energy part of the spectrum below the extraction
energy. In this way, one is not only making use of the excess
energy of the blue solar photons but can also lower the bandgap

to harvest lower energy photons than what would otherwise be
possible. In addition, in the pursuit of optimal absorber material
with low bandgap, leveraging materials with high two-photon
absorption coefficient aligns with maximizing photon utilization
from radiation and enriches the HCSC possibilities. The general
structure of HCSCs can be simplified as a light absorber layer
sandwiched between two energy selective contacts (ESCs), as
shown in Figure 1.24 The extraction energy window needs to be
suitably narrow for minimizing the energy loss within the
contacts, as shown in the energy diagram in Figure 1. The idea of
HCSCs was first proposed by Ross and Nozik in 1982,18 and the
PCE calculations in the case of different loss mechanisms in
HCSCs have been developed over decades.24−27 For example,
theoretical calculations indicate that an HCSC device has the
potential to achieve 50% PCE under concentrated solar
radiation (1000 times), provided that certain conditions are
met: sufficiently long cooling time of 1 ns, fast HC equilibration
time (heat exchange) of 1 ps, and narrow extraction energy
window of ESC of 0.1 eV.28

The theoretical maximum conversion efficiency of an ideal
HCSC is near 66% under 1 sun illumination, aligning closely
with the efficiency attained by tandem cells employing an infinite
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number of junctions.18 This equivalence holds because both aim
to minimize thermalization losses. The infinite-junction device
achieves this by perfectly matching the bandgap of materials to
each photon energy, while the HCSC maximizes efficiency by
recycling the energy released during thermalization in a single-
junction system.
In recent years, lead halide perovskites (LHPs) have garnered

significant attention for their numerous attractive properties in
PV applications, including HCSCs. Upon analyzing the loss
channels within MAPbI3 across the solar spectrum, the
theoretical maximum PCE of perovskite-based HCSCs is
found to be approximately 57%,23 indicating its high potential
in surpassing the SQ limit. Remarkably, the giant two-photon
absorption coefficient observed in perovskite nanostructures,
including quantum dots (QDs) and 2D perovskites, makes them
interesting also for harnessing low-energy photons.29,30 An
important characteristic that determines the potential of a
material as a candidate for HCSCs is the HC lifetime, which
should be long enough for carriers with excess energy to be
extracted. The HC lifetime of LHPs with different compositions
have been extensively studied.23 Figure 2 shows the number of
publications during the past decade related to HCSCs and the
part which is using LHP as target material.31−33 We point out
that a significant number of these papers published around 2017
are highly cited. The possible reason for the “special year” may
lie in the fact that the high-quality bulk LHP layers leading to
solar cells with respectable PCE were achieved by that time
allowing the exploration of additional possibilities.34 While hot
carrier extraction has been achieved,31 no real-life improvement
of the solar cell performance owing to the hot carriers has been
reported. Most likely, the necessary conditions for HCSCs have
not been achieved so far. Theoretical analyses considering the
thermodynamic balance of HC relaxation, equilibration, and
extraction rates have suggested a range of the possible limiting
parameters, the most important of which are the hot carrier
lifetime and temperature.18,22,25,26,28 The long-range HC
transport observed in perovskite (up to 600 nm) also suggests
the potential of LHP in HCSC applications.35 The other key
element, ESC, can be achieved via the resonant tunneling effect
in double-barrier nanosystems, which can improve the HC
extraction efficiency.36−38 Various studies have been conducted
on the application of quantum well (QW) structure as a
potential final form of HCSCs.39,40 The QW structure enriches

Figure 1. Schematic of hot carrier solar cell device, where ESC
represents energy selective contact, and the corresponding energy
schematic of an HCSC, where conduction band minimum (CBM)
and valence band maximum (VBM) are marked.

Figure 2. Publications in the field of hot carrier solar cells and using perovskite as absorber material based on the search results from Web of
Science (from 2014 to 2023, accessed November 2023) and a list of advanced time-resolved spectroscopies used for investigating hot carrier
cooling in perovskites.
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the possibilities for future device fabrication by selectively
combining different materials and adjusting the phononic
features. While the mechanisms remain elusive, slower HC
cooling rates have been reported in multiple quantum well
(MQW) systems compared to bulk materials.20,41,42

To target the best material composition and device
configuration for efficient HCSCs, understanding the relaxation
pathways of HC in LHP is pivotal. Various advanced time-
resolved spectroscopic techniques have been utilized to study
the HC cooling dynamics in LHPs, as shown in Figure 2. Since
the late 1960s, optical techniques have been employed to
directly measure the HC relaxation in semiconductors.43 The
development of ultrafast lasers, with pulse duration being well
below 100 fs, has enabled us to investigate the important carrier
scattering processes in materials including LHPs. Transient
absorption spectroscopy is extensively utilized to investigate the
HC cooling dynamics in perovskites, with the carrier temper-
ature being extracted by fitting the high-energy tail of the
photobleaching signal to the Boltzmann distribution (approx-
imation to the Fermi−Dirac distribution). However, this fitting
method presents uncertainties related to the density of states
which is difficult to quantify and is usually simplified to be a
constant value in the investigated spectral region, as shown in
Figure 3. There is also possible spectral overlap between the
bleach and the excited state absorption signals, which can
complicate the analyses. These uncertainties can significantly
influence the accuracy of the results.44 Even though two-
dimensional electronic spectroscopy (2DES) is not free from
such difficulties, it allows superb simultaneous time and energy
resolution.39 As a powerful alternative, in time-resolved two-
photon photoemission (TR-2PPE) spectroscopy, the system is
excited by a short pump pulse and the hot electrons are ionized
by a delayed probe pulse.45,46 In this way, the emitted
photoelectrons directly map out the energy distribution of hot
electrons in the conduction band as a function of delay time,
although the energy resolution of the method is currently not
very high. Extra caution should be exercised regarding sample
degradation, e.g., conduct measurements at low environmental
temperatures, especially when mapping the hot electrons with
high excitation fluence for a better signal-to-noise ratio.
Time-resolved hot luminescence is another method to

investigate the HC cooling dynamics by fitting the emission
tail region at the high-energy side to a Boltzmann distribution.47

However, only materials with emissive hot states are suitable for
this technique, and the hot photoluminescence signal becomes
very weak on the longer time scales. Given that hot
luminescence occurs at higher energies, there is a risk of
reabsorption, particularly in optically thick samples, which can
affect the accurate detection of HCs. Furthermore, carrier
population dynamics within a broad energetic disorder can also
appear as a slow decrease in carrier temperature, which can
complicate the assessment of HC dynamics.48

Regardless of the signal source and setup configuration, the
measurements listed in Figure 2 have been used to understand
the HC cooling dynamics in perovskites directly or indirectly.
Since analyses of the experimental results and interpretations
typically involve approximations and assumptions, combining
information from multiple techniques can provide a more
complete picture of the HC cooling dynamics in LHPs.46 The
reported time scales of HC cooling cover a broad range
depending on the material and the measurement. In Table 1 we
summarize the typical times for carrier cooling to 600 K in the
perovskite materials under different excitation conditions. A
detailed list can be found in the Supporting Information.
The HC relaxation process generally consists of four stages, as

shown in Figure 4. In the first stage, initial excited HCs lose their
energy via carrier−carrier and carrier−phonon scattering in the
time scale of 100 fs, which is named HC thermalization. Only
after the quasi-equilibrium is reached can the “temperature of
the HC system” be assigned, and the HCs follow the Fermi−
Dirac distribution. In the next stage, HCs further lose their
energy mainly by interacting with the lattice to emit
longitudinal-optical (LO) phonons with small k-value (mo-
mentum). The equilibrium between HC and LO phonons is
reached within the time scale of a few picoseconds. In the third
stage, acoustic phonon emission is involved, and the equilibrium
among HC, LO phonons, and acoustic phonons is reached on

Figure 3. Transient absorption spectra for demonstrating the extraction of HC temperatures (a) and the normalized spectra (b) extracted from
panel a with the delay time range from 0.3 to 50 ps. The highlighted section denotes the high-energy tail region used for Boltzmann fitting, with
the equation integrated into the figure for reference. The data adapted from ref 46.

No practically viable perovskite-based
hot carrier solar cell exists. Never-
theless, the long diffusion length and
extended lifetime of hot carriers high-
light perovskites’ promising potential
for such applications.
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the 100 ps time scale. Thereby, the HC cooling involves a
cascade of processes in which reaching equilibrium between
different phonon modes is one of the key elements. This can be
used for prolonging the carrier cooling via the so-called hot

phonon bottleneck by engineering the phononic band gap with
the help of nanostructures.67

The most efficient channel of phonon decay in LHPs is called
Klemens decay, where one LO phonon decays into two

Table 1. Time Scale of HC Cooling down to 600 K under Different Excitation Conditions and with Applying Different
Techniques in Different LHPs

Excitation conditions

Compositions Excitation energy
Excitation density n0

(×1017 cm−3)
Delay time to 600 K

(ps) ref

APbI3 film (A = MA, FA, Cs) Eg: 1.3−1.7 eV Above bandgap (∼3.1 eV) 28−60 12−60 49−51
5−15 0.5−0.9 49,51

Near bandedge (∼2.2 eV) 65−270 0.8−1 49,52,53
1−40 0.1−0.5 49,52−55

APbBr3 film (A = MA, FA, Cs) Eg: 2.2−2.4 eV Above bandgap (∼3.1 eV) 30 ∼ 3.6 56
Near bandedge (∼2.7 eV) 70−85 0.75−1 52

18−20 ∼ 0.35 52
APbX3 film (A = MA, FA, Cs, or mixture) (X = mixture of I,
Br)

Above bandgap (3.1 eV) 30−40 0.4−0.5 51,57
3−4 <0.1 51,57

APbX3 film (A = MA, FA, Cs) (X = mixture of Br, Cl) Above bandgap (3.1 eV) 30 2.4−2.8 56
Low-Dimensionality Samples

APbI3 QDs (A = MA, FA, Cs) ∼2.64 4−8 0.2−0.4 58
A’PbI3 QDs (A = mixture of MA, FA, Cs) ∼2.64 4−6 0.3−0.4 58
APbI3 NCs film (A = MA, FA, Cs) 3.1 eV 10−70 30−40 59,60

2−4 2−9 59,60
APbBr3 NCs film (A = MA, FA, Cs) 3.1 eV 10−170 2−40 31,61,62

1−5 0.2−0.7 31,61−63
2D Perovskites: (B)(MA)n−1PbnI3n+1

n = 1 (B = (ACA)(MA), PEA, (3AMP)2, (4AMP)2) 3.1−3.9 eV 65 1−2 64
4 μJ/cm2 65
6−20 <0.5 64
2 μJ/cm2 65

n = 2 (B = (BA)2) 3.1 eV 30 μJ/cm2 ∼ 2 66
<15 μJ/cm2 <0.3 66

n = 3 (B = (BA)2) 3.1 eV 30 μJ/cm2 ∼9 66
120−240 1.5−2.5 46
30−60 0.3 46
<15 μJ/cm2 <0.3 66

n = 4 (B = (BA)2) 3.1 eV <30 μJ/cm2 <0.3 66

Figure 4. Schematic of the time-dependent temperature of the hot carrier, LO phonons, and LA phonons.
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longitudinal-acoustic (LA) phonons.68 The possibility of other
LO phonon decay channels should not be completely ruled out,
e.g., by emitting transverse acoustic (TA) phonons. Further
cooling of the system involves heat dissipation to the
environment or carrier recombination on the nanosecond time
scale, which will not be discussed here since the carriers are no
longer in a “hot” state. The cooling dynamics of HC, LO
phonons, and LA phonons after carrier thermalization, as shown
in Figure 4, can be deduced based on the three-temperature
model69 and the HC cooling dynamics model.49

Several mechanisms have been proposed to play a role in
prolonging the HC lifetime in LHPs, including polaron
formation, hot phonon bottlenecks, and Auger recombination
(also known as Auger heating). These mechanisms have shown
distinct excitation intensity thresholds, with typical character-
istic carrier densities of 1016−1017, 1017−1019, and higher than
1019 cm−3, respectively. The schematics of these mechanisms as
well as the polaron overlap are shown in Figure 5. Also acoustic
phonon−optical phonon up-conversion, Rashba splitting,
trapping of HCs, and changes in the near-bandgap density of
states (DOS) have been suggested to prolong HC lifetime in
LHPs.47,51,59 We will not further discuss these possibilities here.
Polaron formation occurs when a charge carrier interacts with

the crystal lattice, leading to the formation of a quasiparticle
consisting of the carrier and the surrounding lattice
deformations. In LHPs, the dominant driving force for polaron
formation is long-range (Fröhlich) interaction between self-
trapped carriers and a displaceable inorganic sublattice, with a
minor contribution from an A-site cation.70 The formation of
the polaron was first proposed to explain the long carrier
diffusion length, and low recombination rate, with relatively
modest mobility in LHPs.32 Although there has been a long-
standing debate over the size of the formed polaron in LHPs,
recent studies have provided evidence that large polarons may
be formed; that is, the polaron transportation is coherent and the
mobility decreases with increasing temperature in typical (three-
dimension) LHPs.71−74 The “large” in the name means that the
polarization cloud can extend over several unit cells, instead of
being confined to a single site as for a small polaron.75 It is
generally accepted that polarons are formed in LHPs on the time
scale of ∼100 fs, while the polaron stabilization energy and the
polaron size can be altered by chemical composition and particle
size.76−78 The picture for the composition dependence is
straightforward. Since the lattice distortion is significantly
altered when changing the B-site cation or the X-site anion,
the optical phonons participating in polaron formation can be
different.70,79−81 For LHP building blocks that have quantum
confined nanostructures, e.g., LHP nanocrystals (NCs) or
quantum dots, the polaron formation is also observed, with
possible influences from the degree of size confinement and
dielectric confinement.82−84 In the HC cooling scenario, the

presence of a polaron serves as a protective shield, screening hot
carriers from scattering with charged defects and optical
phonons. As a result, HC cooling can be significantly
decelerated, with the slowdown commencing on the time scale
of the formation of large polarons (∼100 fs).
The hot phonon bottleneck is another effect that can explain

the prolonged lifetime of HCs in LHPs under a high excitation
intensity. As mentioned above, when an excited carrier is
generated in a polar material, it quickly thermalizes with other
carriers and the lattice via LO phonon emission. Further, the LO
phonon can decay to acoustic phonons, and the most efficient
decay channel in polar material (Klemens decay) is hindered in
LHPs due to the large energy separation (ELO > 2ELA).

55

Considering the strong Fröhlich interaction between carrier and
LO phonons and the inefficient LO phonon decay, it is expected
that an equilibrium status between HC and LO phonons can be
reached before the final equilibrium between the carrier and
lattice (acoustic phonons). The hot phonon bottleneck happens
when the dissipation of the excess energy of the LO phonons is
significantly slower than the time that it takes to reach the HC−
LO phonon equilibrium. This means that the LO phonon
emission and reabsorption are governed by the detailed balance
at the HC temperature, while the LO phonons are in strong
nonequilibrium with respect to the other modes. The energy of
the system (HC−LO phonon) during phonon emission is not
necessarily dissipated if the efficiency of phonon reabsorption is
sufficiently high. Given that the hot phonon bottleneck effect
occurs under strong excitation with efficient phonon reabsorp-
tion and less efficient phonon decay, it is natural to expect that
the effect is dependent on carrier density (as it involves the
electron−phonon scattering rate) and environmental temper-
ature (as it relates to phonon occupancy).

It should be noted that it is possible to observe two stages in
HC cooling in LHPs under moderate excitation without the
pronounced hot phonon bottleneck effect. After carrier
thermalization, the HC system loses energy via LO phonon
emission (resulting in HC−LO phonon equilibrium) and
phonon decay (leading to equilibrium among HC, LO phonons,
and acoustic phonons). Therefore, the emergence of two stages
is dependent on the coupling strength of the HC−LO phonon
and the efficiency of the phonon decay rate in dissipating the

Figure 5. Schematics of polaron formation, polaron overlap, hot phonon bottleneck effect, and Auger heating.

In addition to the hot carrier relaxation
dynamics, it is important to understand
the elementary unit where heat ex-
change from a hot to a cold carrier can
take place, possibly with hot phonons
as mediators.
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excess energy of the carrier−LO phonon system. Conversely, in
the presence of the hot phonon bottleneck effect under high
excitation, the initial system temperature of the second stage
may be significantly elevated. For LHPs, the hot phonon
bottleneck effect is considered to be enhanced compared to
conventional inorganic semiconductors, due to the relatively
small LO phonon energy and possibly the low DOS in the
electronic structure of LHPs.85,86

Auger heating, or nonradiative interband Auger recombina-
tion, is another mechanism that plays an important role in
prolonging HC lifetime in LHPs under intense excitation.55 In
this process, the energy released from interband carrier
recombination is effectively transferred to another excited
carrier, causing it to undergo a transition from a relatively cold
state to a hot state above the band edge by the amount of the
energy of recombination, at least the bandgap. Thus, the lifetime
of the HC system can be prolonged due to the energy
redistribution within the carrier population. Furthermore, the
impact of Auger heating is particularly pronounced at high
carrier densities, due to the enhanced three-body scattering, and
in materials characterized with a small band gap or those
exhibiting nanostructures.55,87 The latter (nanostructure)
increases the Auger heating in two ways. First, the Coulomb
interaction between charge carriers is enhanced by spatial
confinement, which increases the possibility of Auger heating.
Second, the conservation rule for translational momentum is less
strict in NCs, and the excess carrier in the Auger heating process
can accept the recombination energy, leading to transition to
higher excited states. Thus the Auger processes are more
efficient in NCs compare to bulk semiconductors.88

We point out that the process of Auger heating is different
from the Auger-type energy transfer, where the additional
energy of the electron is given to the hole (or the other way
around). Such a process has been discussed as a possible
explanation of an accelerated relaxation rate in small inorganic
semiconductor NCs (e.g., CdSe NCs) under low excitation
fluence.89 Interestingly, in LHP NCs, the HC lifetime is
significantly longer compared to conventional NCs.62 These
phenomenona suggest the suppression of Auger-type energy
transfer in LHP NCs, likely attributed to factors such as the
symmetric energy dispersion, smaller carrier effective mass, and
other related characteristics of LHPs.90

Developing a comprehensive model that includes all of these
mechanisms would offer a thorough perspective on the HC
cooling process in LHPs. The transition of dominant
mechanisms for slowing down HC cooling, from the polaron
to hot phonon bottleneck effect, is proposed to occur at a critical
Mott density. The large polarons begin to spatially overlap at
higher excitation intensities, leading to mutual repulsive
interactions that destabilize the large polarons.52,72,91 With a
further increase in the carrier density, the possibility of the cold
carrier absorbing energy released from carrier recombination is
increased and the HC lifetime can be significantly prolonged, as
suggested in the Auger heating process. The cooling dynamics of
the HC system under different excitation densities is not ruled
by one mechanism, but the collective influence from multiple
factors and the significance of each mechanism are not yet clear.
Quantitative investigations are needed to complete the picture,
e.g., the relation between transition temperature and the
material composition, to which percentage the usage of these
mechanisms can be most beneficial for HCSC applications, how
to balance the material stability, and how to judge which

operation condition (e.g., excitation fluence) is most practical
for LHP-based HCSCs in the future.
In conclusion, extensive research has been conducted on HC

cooling and electron−phonon coupling in LHPmaterials for the
development of HCSCs. The HC cooling processes in LHPs
involve several stages, including HC thermalization, LO phonon
emission, and phonon decay. Mechanisms such as polaron
formation, hot phonon bottleneck, and Auger heating have been
proposed to contribute to the extendedHC lifetimes observed in
LHPs. These mechanisms are interconnected, and a compre-
hensive model encompassing all of them would provide a
thorough understanding of HC cooling in LHPs.
However, important challenges remain. What is the required

time scale of hot carrier cooling for practical perovskite-based
HCSCs? What are the other criteria? So far, no solar cell that
benefits from hot carrier extraction has been demonstrated.
Does this mean that the time scale of HC cooling is not
sufficiently long for making a real device? It has been argued that
for making a meaningful contribution, the cooling time needs to
be comparable to radiative recombination, and 1 ns was named
as a guideline for achieving 50% efficiency.26 In the studies
where hot carrier injection has been demonstrated, so far the
focus has been on fast injection,62 clearly motivated by the short
lifetime of hot carriers. In the following discussion, we approach
the issue from a different angle so far overlooked in the literature.
As explained in the original suggestion by Ross and Nozik,18 for
the HCSC to work efficiently, both hot and cold carriers need to
be taken care of�the surplus energy of hot carriers is used to
“warm up” the cold carriers originating from the band-edge
transitions initiated by the red side of the solar spectrum. This
means that the thermal energy of the hot carriers excited by the
blue photons needs to be able to meet the cold carriers excited
by the red photons. We point out that the hot carriers do not
need to meet themselves with the cold carriers. It would be
enough that the hot phonons (see the hot phonon bottleneck)
meet the cold carriers and warm them up. If we consider as
“blue” all the photons with wavelength shorter than 500 nm, we
can estimate from the AM 1.5 solar spectrum that each second 2
× 1020 blue photons from the Sun fall on an Earth area of a
square meter. We argue that for the maximum HCSC
performance, every carrier excited by a blue photon needs to
be able to provide energy to a cold carrier excited by a red
photon. This means that the blue photons need to be coming to
the elementary unit where the heat exchange can take place at a
rate that is not smaller than the cooling rate. Otherwise the
likelihood that the heat exchange can take place would be
reduced. Let us consider a square of 100 × 100 nm2. A blue
photon from the Sun falls at such a square once per 0.5 μs, on
average. Using a high-end solar concentrator (can reach 1000
times), this number can be reduced to a subnanosecond scale. If
the unit is smaller, the necessary time scale would be
correspondingly longer. The question of what should be
considered as the elementary unit of the heat exchange in
HCSCs has not been addressed in the scientific literature so far.
We point out that for the heat exchange to take place, the hot
and cold carriers do not need to necessarily meet. In the context
of the hot phonon bottleneck, the charge carriers reach thermal
equilibrium with the subset of phonons. It is enough that the
cold carriers would be interacting with these hot phonons and
warm up in this way. As a word of warning, the optical
experiments of hot carrier cooling typically use light intensities
many orders of magnitude higher than what can be achieved
with solar concentrators. In summary, we emphasize the
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significance of the hot phonon bottleneck which not only
extends the HC lifetime but also facilitates heat exchange
between hot and cold carriers, even if the carriers themselves do
not meet.
To understand the expectation of the HC lifetime and the

involved mechanisms in LHPs, it is crucial to investigate HC
cooling dynamics, which can be achieved through spectroscopic
techniques. Transient absorption spectroscopy and time-
resolved photoluminescence spectroscopy are powerful tools
for accessing the transient change in the HC population, but
extra cautiousness is needed since the fitting method can have a
significant impact on determining the HC cooling rate and
potentially provide misleading results. To reduce the risks, we
recommend simultaneous use of several ultrafast spectroscopic
techniques and combining their information for a more
comprehensive understanding of HC cooling processes in
LHPs. Furthermore, it can facilitate a clearer assessment of
which compositions or structures of LHPs hold the best promise
for HCSC applications.
Nanostructures and quantum well structures have been

explored to manipulate the HC lifetime and enhance the
efficiency of HC extraction in HCSC. For example, two-
dimensional LHPs,92−95 with their inherent quantum well
structure, hold great potential as a material candidate for HCSC
applications.65,96 These materials have already demonstrated
numerous advantages in LHP-based photovoltaic applications.
Along these lines, further investigations of the HC cooling
dynamics of 2D LHPs with varying “n-values” (referring to the
number of octahedral layers in one unit cell) would be highly
needed. For example, the exciton binding energy of 2D
perovskites, depending on the n-values and compositions,97

ranges from 30 to 120 meV, and even up to 200 meV.98−101

Additional investigation and comprehensive studies are required
to fully understand the interplay between exciton binding
energy, n-value, and the observed variations in the HC cooling
dynamics among different 2D perovskite structures. The existing
investigations into HC cooling in 2D perovskites, as outlined in
Table 1, have yet to yield a definitive conclusion on this aspect.
Such studies would provide valuable insights into the behavior of
HCs in these materials and help to assess their potential for
HCSC applications. Further research and development in this
field are essential for the realization of high-efficiency LHP-
based HCSCs and the advancement of renewable energy
technologies toward a more sustainable future.
In this Perspective, we provide an overview of the intriguing

field of hot carrier cooling in LHPs from our personal
standpoint, fully aware that our perspective cannot encompass
the entirety of this extensive body of research.We apologize if we
have not mentioned your important work. Given the wealth of
studies available, we had to be selective in our approach,
inevitably introducing a subjective element into our selection.
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