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The widely used Forster-Galanin-Dexter’s (FGD) procedure of representation of the elec-
tronic excitation energy-transfer rate between donor and acceptor impurity molecules,
imbedded in small concentration in molecular crystals, is discussed by the overlap, integral
of their light emission and absorption spectra. It is shown that this representation is only
an approximative one, therefore a correction factor to the optical spectra overlap integral
is given. This correction factor depends on the distance between donor and acceptor mole-
cules and has a longer range in the case of the interaction of the donor and acceptor elec-
tronie excitations with acoustic phonons as compared to the interaction with optical pho-
nons, The validity conditions of the representation mentioned above are discussed in detail.

O6cysxTaeTca NIMPOKO NCIIOAb3YeMad nponetypa Pépcrepa-I'ananuda-Iiexcrepa
NIpe;ICTaBICcHUA CROPOCTH llepejayui 9HepPI'dM 3IleKTPOHHOr0 BO3OYMRICHUA MEHIY
TIPUMeCHBIMU MOJICKYJaMH JIoH0Pa U aRUCIITOPA, B Mallolf KOHIEHTPAllMK BHeIpex-
HBIX B MOJIERYJISIPHBII KPUCTAJI, ¢ IOMOIUBLIO HUTErpala MePeKPHTAA ONTHICCKNAX
CNIeKTPOB H3JIyYeHHA U IIOTIOMIEHM L 3TUX Mo Tekydl. [1okasaHo, YTO TAKoE IpecTa-
BJICHHE sIBJIsIeTCS IIPHOJMKEHHBIM, I CYIICCTBYeT NOIPaBOYHEINA MHOMHUTENb K
HHTErpajy NepexpHTH. JTOT NONPABOYHEIN MHOMKUTE]Ib 3aBMCUT OT PACCTOSHHSL
MeAyly MOJIeKyJaMU JOHOPA H aKIeHTOpa M MMeeT 0oJjiee JallbHOJAEHCTBYHOUIMMI
XapaKTep B cliyyae B3aUMOJNeUCTBHA DJIEKTPOHIBIX BO30YstleHMI MOJeKyJ NOHOpa
M aKIeHTOpa ¢ aKyCcTHYecKMMH ¢(OHOHaMU, YeM B ciaydae BaamMomeicTBus C
ONTHYECKUMU POHOHAMM.

1. Introduction

The FGD formula [1 to 3] for the electronic excitation energy transfer rate
Ppa(R) between donor (D) and acceptor (A) impurity molecules imbedded in
a small concentration in crystals is widely used [4] for the interpretation of
nunierous experiments on the study of the sensitized luminescence phenomenon
in solids. The attractiveness of this formula arises from the possibility to
represent Ppy through the overlap integral of the light emission and absorption
spectra of guest molecules. In particular, the FGI formula was widely used for
the calculation of the diffusion coefficient in a number of works [7 to 9]. In
[5, 6] the approximate character of this representation was firstly pointed out.
But the analysis made in [6] was only qualitative and practical use of the results
in [6] is rather complicated. Therefore it seems important to consider the FGD
procedure of the Py, representation in detail and to estimate the separations &
between the D and A molecules at which this representation would be a good
approximation for Pp,(R). It is shown below that in a more correct theory
of Ppa(R) a correction factor to the FGD overlap integral appears, which de-
creases with increasing R. In the case of a sufficiently strong interaction of
donor and acceptor electronic excitations with acoustic waves in molecular
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crystals this correction factor may be of rather long range nature and its
estimation becomes an important problem.

2. The Resonance Energy Transfer Rate Py,

Let us firstly derive a general formula for Pp, considering a molecular
crystal of an arbitrary symmetry in which two impurity molecules, donor and
acceptor, arc placed at lattice sites, » and m, respectively. We shall assume
that

a) there is one molecule in an elementary cell of the crystal;

b) the energy transfer rate Pps may be calculated in the first order of the
nonsteady-state perturbation theory;

¢) the energy terms of electronic excited states of host molecules are higher
than the corresponding terms of guest molecules and well separated from the
last terms;

d) the interaction Hamiltonian of electronic excited states of guest mole-
cules with crystal vibrations is linear in the displacements of nuclei from their
equilibrium positions in the crystal.

The assumption b) may be Justlfled if the interaction of excited states of D
and A with the phonon field is sufficiently strong. Due to assumption d) the
account of the polarizability of the host substance results in a renormalization
of the matrix element of the Coulomb interaction V,,, between ground and
excited states of the D and A molecules, which, according to [10], consists of
replacing Vam by the matrix element of an effective interaction Ve,

The Hamiltonian of the system may be written in the following form:

f = AuBiBa + AmBiiBm + Ve (BiBm + BiaBa) +
): ke, bib, + BBy 2 ho, (VEmM) b, + V(n )b;)a) +

+B;.B,..2hwx(V*<m>b + V(m)by) , (1)

where Bf and By are Bose operators representing the creation and annihilation
of an excited state of the molecule at lattice site I (I = n,m), b} and b, are
analogous operators for the %-th phonon with the energy 4w,, 4, and 4, are
the energies of electronic excitations of the isolated D and A molecules, respec-
tively, V,(I) is the electron-phonon interaction matrix element; x =g, s,
where q is the phonon wave vector, s is the phonon mode number.

To caleulate Ppy it is useful to introduce a “polaron” representation making
the following unitary transformation H = ¢SH—S5, where S = Bj}B.S, -
+ B BuSm, Si= Z DLV (D) — b,V ()] Omitting the terms of the direct
interaction between the excited D and A molecules, which are unimportant for
the present consideration, one obtains

ﬁ:ﬁo"*‘ I,]\nm‘+‘ ﬁmn;
where
H,= (A,. — 2 V,,(n)|2) BiB, + (A,,. — V,‘(rn)|2) + X hobibe;,  (2)
td x x

~

- 1t , -8
Vam = Vam € "B:Bme m
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In the first order of the nonsteady-state perturbation theory the rate Pp,
is

2. A ~
Pos =22 5 00) ) Vo 1 V) Ponn 1> 8(Hs — Bi) 3)

where g(E,) is the density matrix, |l > and E; are the eigenvector and eigenvalue

of the Hamiltonian X, respectively.
Using (2) and (3) one may write

1 [o.0)
PDA = ;ZE f dt <Vnm(t) Vnm(0)> ) (4)

where
Vam(t) = ek . e=iflutin

Further assuming that only one electronic excitation exists in the system
considered, one finds

[¢ o]
lVre-frfnl2 oSn® o —=Sm® Bin(©) _—5p0)
PDA = -- h2 dt e‘m me my gtm € n » (5)
—oo

where

1Q = (A — Am) + X hoo(| Vaim)|2 — [Va(n)|?)

is the difference between the electronic excitation energies of donor and acceptor
molecules in the crystal.

The calculation of the integral in (5) offers no difficulty (see, for example,
Appendix in [11]). One obtains

eff o < .
Ppy = H%:ZLI_ femtw,.m(t) ) (6)
where o
Gum(t) = X [V (n) — Vi (m)|2E,(0); (7)
cosh ( 2]\;’11 + 7/a)"t) ( ]l(l)x )
— —ectghl 577

Eull) = — 2kT )° (8)

sinh h— -
sin % T

3. The Approximation of the Resonance Energy Transfer Rate Py
by an Overlap Integral of the Light Absorption
and Emission Spectra of Impurity Molecules

Let us return from “the polaron” representation to the initial one in (5):

2
Py, = _hz— f dt {Br(t) Bm(t) Bm(0) Ba(0)> . 9)



780 S. I. Gorn.uBov and Yu. V. KONOBEEY

If now the two-particle correlation function in (9) is approximately presented
as a product of the one-particle correlation functions as follows:

(Ba(t) Bm(t) Bn(0) Bn(0))> = (Ba(t) Bn(0)> <Bm(t) Bm(0)> (10)

and the Fourier components of these one-particle correlation functions are
introduced,

OnlE) = 5 f & By (t) Bin(0)> dt
£ + (1)

o= B) = 5 f eSFE (Ba(t) Bal0) At

one easily obtains Ppy in the form of

5 _ 2| Veml?
Pm:ﬂﬁ I [dygm(E) In(H) - (12)

The functions Gy (E) and gn(¥) describe the optical absorption and lumines-
cence spectra of molecules m and n, respectively. Indeed, in case of dipole
optical transitions in the guest molecule the rate wm(E) of the absorption of a
photon with encrgy & (for the sake of simplicity the refractive index is assumed
to be independent of the energy ¥ in the frequency range of interest) is

(2m)2E

“gyy [ Pml2Gm(E) (13)

Wm(E) =

where ¥V is the crystal volume, P is the effective dipole transition moment of
an acceptor molecule from its ground state to the excited one found by taking
into account the polarizability of the host substance.

The spontaneous emission rate 4,(E) of a photon with an energy lying in the
interval B, B 4 d¥ is equal to

An(B) =

4F3 .
gaicy | Fn 1" gn(E). (14)

where P is the corresponding effective dipole transition moment of the donor
molecule, ¢, is the light velocity in the crystal.

For simplicity one can take into account only the dipole~dipole interaction
between the guest molecules averaged over all poqsxble directions of vectors
Pf,?3 and P2, Then the expression for Vi, becomes Vg = 2 | Py |2- | P | /[0 —m|®
(see [10]). Introducing the normalized spectral distributions f,(£) and F,(E) as

An(E) = (l/rp) fp(E) and W (E) = (c,@4/V) F4(E), where 1y is the radiative
life-time of the donor molecule, @4 is the total light absorption cross-section of
the activator molecule, one obtains the known result [2] of the FGD theory

~ 4 A
Poa= s f fo(®) F AB) g (15)

47 |ln —m|S1p

It is interesting to note that taking into account the normalization equations
fgnEYdE =1, [GuEYdE=1 (16)



The Theory of Sensitized Fluorescence in Solids 781

one may write expression (12) in a more gcneral form

f WonlE) Au(E) 0.
2 I/efi
By =22 (17)

WalE) ., A’()‘
fesies

The last expression for P])A is valid, in principle, at an arbitrary distance
between guest molecules including the small distances at which the dipole~
dipole interaction may be a crude approximation of the real interaction. But

a poor knowledge of P, at small distances makes (17) of little value.

Let us now discuss the approximations made when obtaining (10). For this
purpose let us use the formulae for G,.(£) and ¢, (&), known from the theory
of light absorption and emission spectra of impurity centres (see, for example

(12

1 % ~HE_X
Gm(E) — —m 01(1'4 St A+ g (D) d¢ , g"(E) p _oyi_hfe WE— At E+gu(t) dt , (18)

where A, and ai(t) (I =m, n) are
di= i — 2t Va2,  gilt) = Z|VaD[2 &0 - (19)

Substituting (18) into (12) and integrating over E one obtains the following

expressions for Ppy:
o0

1f
Pp, = IV;u;nl f RLETNORTSON (20)
where 202 = j,. — -

By comparison of (6) and (20) one can see that the approximation (10) con-
sists of neglecting the “interference’” factor in (6)

y(t) = exp {-— 2 Re Y Vi(n) V(m) fx(t)}- (21)

Such neglect may be valid only at large distances between the molecules D
and A, when (n — m) is much larger than the lattice constant a. Actually
V) ~ et and at (n — m) > a the “‘interference” factor mentioned, above
is close to unity because the factor exp (iq(n — m)) rapidly oscillates. But at
(n — m) =~ a the situation may be different.

For an accurate determination of the critical distance R, at which (6) may
be well approx1mated by (20) one needs detailed information about ¥ ,(I). This
information is very poor at present. The approximation V,(I) ~ w;7 Y% is gene-
rally accepted (see the detailed discussion in [14], p. 184). Below the validity
of (20) will be discussed in the latter approximation.

Let us write (6) in the following form:

[e o)

i eff 2 R
Pys— _',K'f,’"_'_ fy(t) o D+ Im® g, {(22)

50 physica (b) 71/2
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and expand the sum 7£2¢ + gn{t) + gm(f) in a Taylor series near ¢ = ¢;, where ¢,
is the extremum (maximum) point determined from the following equation:

Q=5 (Vun* -+ Vm)B) o — 2= — — — (23)

If »(t) = y(t,) in (22) is taken approximately, one finds that Ppa = p(f,) P~1)A,
where v(t,) is a correction factor for ¥GD formula (15) being equal to

() = exp [ 2 2 [Vulm)] | Vidm)] cos (qln —m) )] - (29

Further treatment of y(f,) will be carried out separately for the electron-
acoustic phonon and electron-optical phonon interactions.

3.1 Acoustic phonons

Let [V, ()| be of the form
' A l "
V(). = VAEU (25)

where /(1) is & constant independent of x, N is the total number of elementary
cells in the crystal. The unknown value of A(l) may be determined from the
emission (absorption) line shape of the impurity molecule. Assuming in case
of sufficiently strong electron-phonon interaction this shape to be Gaussian {14],
the value of A(I) may be expressed through the line half-width I'(?) as follows:

A= —————5— == ———— —. (26)

0

When obtaining (26) the Debye phonon spectrum w, = ¢ |q| is used where ¢ is
the sound velocity; wp is the Debye frequency. In an actual case T > 6p/2

oy 2kT
tgh gl — :
' (2kT ) Foge 00 = HenlB)
and (26) reduces to
Iy 6
Al = 5 — -2,
B = ey T 7
Now the condition of y{¢,) being close to unity can be formulated. Substi-
tuting (25) into (24) and taking into account (27) one finds that y(¢) =~ 1, if

— T 3
_F’(I"L__’rﬁi ,_9__, ZO)E - — — == __a__ ><

a D 41n 2. J6n? |0 —m|
i ! Z, | 2
: et ] ]n ml ’ wDh

= /62 - e — =7 . 2
X If de p sm(;ﬁn " x)‘<r<n)11(m')——77 (28)
|

lo
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In inequality (28) Z, is the root of the equation which results from (22)

=Py 3 OpfjocoshZ T 1),
M=Tim)+ I2m) 162 T Zy, \Op Z,
1 2 (T 1
+ sinh Z —,—~—7(————)}. (29
0 (AO Zs\0y Z, ) )
As it follows from (29) the value Z, depends on two parameters #; and 7'/0y,.
—m!
The function ¥ (Pl— a—’”—',br—, Z0> computed at 7, = 0.05 and T/, =3 is
D

shown in Fig. 1. At jn — m|/a > 1 the function F rapidly oscillates and de-
creases with increasing |n — m|/a. The solid curve shown in Fig. 1 describes
the dependence on |m —m| of the maxima of F and corresponds to

2 3
the law F ~(— & — | that differs from F~(- “ ) obtained in {71
- In — m| In — m|
The behaviour of Fat other values of %, and T/, is similar. Therefore,
—_ m 2
F (l_’l_a m| ,?JD_, Z0> < Alny, T]0yp) - (I_" LimT) , and instead of (28) one has
Al Ty
n—m|>a V Ay, Ti0p) (30)
Y

The function A(ry, T/0p) computed at T/0;, == 0.77 and 3 is shown in Fig. 2.

w? oy

the values 1 = = — = — and 7y = - — 2 — k f
If the values g Finy- Tom) ana 7, I*my < (m) are known ifrom any
70°
10°
E <1
N34 S I
70¢
70° -
70{)‘ - Ll 11l 1 11 { 70‘3
307 ° ] 0

Fig. 1 Fig. 2

n—m '
Fig. 1. The function F (l— o ]) at n; = 0.05 and 7'/6 = 3. The full line corresponds

or (57 2
a n —m|

Fig. 2. The function A(z,). The upper and lower curves correspond to 7'/6p == 3 and 7'/0p ==
= 0.77, respectively

50*
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experiment, one can determine from Fig. 2 the distance K, = |n —m|,, be-
ginning from which the correction factor y(f) is unity in practice. Then if
R, < R,, where R, is the characteristic radius of resonance transfer determined
by (15), the approximation of Pps with the help of the overlap integral of
luminescence and absorption spectra in (15) is good. In the opposite case the
correction factor may be large and the use of the FGD formula may be mis-
leading in some cases. For example, if

Im)=1(m)=1500cm™?, Q ="7500cm™!, wp="T0cm™ 1, (30a)

the values 5 and 7, are equal to ~ 2 X 10-3 and 10~ respectively. Determining
from Fig. 2 A(ny, T/0p) = 1072 and substituting these values of A(n,, T/0p)
and 7 into (30) one obtains R, =~ 2a <{ R,. The typical value of R, is ten
lattice parameters or more. Variation of the parameters does not change
the result of the inequality B, < R, It seems that one should be especially
careful when using Ppa (15) for calculating the host luminescence decay
law in a binary solid solution, in which the exciton diffusion coefficient
is sufficiently large (VDrD > R,), and, therefore, in the electronic excitation
transfer from host molecules to acceptor ones the largest contribution is from
the excitons which may migrate close to an acceptor molecule [15]. Therefore
in this case the approximation Pps (15) is valid only if R < a and not if
R.< R,
3.2 Optical phonons

In the case of electron—optical phonon interaction using (25) one obtains
the exponent in (24) being proportional to 8(m — m) and thus y(¢) = 1. But
if one takes into account the dependence of V,(I) on ¢, the |n — m| dependence

of p(t,) may be long-range. The simplest anisotropic expression for V(1) which
may be proposed is of the form

40 (.
7 = 1/7\,% St 1)

where A is some vector of unit length. The value of A(l) may be expressed in
terms of the luminescence (absorption) line half width I'(l) as follows:

Al = > (32)

where w, is the frequency of optical phonons (6, = #w,/k). Substituting (31)
into (24) and taking into account (32) we find that the correction factor
p(ty) = 1, if

(n—m| T , g [ cosh (ﬁ+z")
7 AL By —1|x
6, In2 cosh 0o
T
1 A4-q)0? . w% ~
% — 5L D gign-m g P 5 33
V% jqp <Tw) Ty =" 5%
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In inequality (33) Z, is the root of the following equation resulting from (22):

6 <
Quy 1 sinh (g}, + Zo)
7= N 2. 34
M= ey ¥ m)” 8In 2 st [ G0 9
27
~ 3
By calculating the sum on the left hand-side of (33) one finds that F~ (I_nih ﬂ)

being in an agreement with the result obtained in [6]. Expressions (31) to (34)
may be used for finding the condition of y(¢)) being close to unity through
the experimental parameters of the emission and absorption spectra. Then
determining the value Z;, from (34) and averaging over all possible mutual
orientations of the 4 and n — m vectors one can obtain the following ine-
quality:

n—m|>af|—— 3_ _ CO%h (ln [OL + Vi al])

107z (In2)7 0, ’
cosh (27,)

o
a = 8{In 2) 7, cosh <2T>

If 7 = 0?/I'm) I'm) and 7, = Quw,/(I'"%(n) + I'*(m)) are available from any
experiment one can determine from (35) bhe distance K, = |n — m|,, beginning
from which the correction factor y(,) may be disregarded.

It is interesting to compare the critical distance R, (30) and R (35) at the
sare parameters I'(n), I'lm), Q, and T'. Using the parameters (30a) and T =

== 300 °K it is easy to prove that R, slightly decreases from R, ~ 44 t0 E,~ 3a

with increasing w, from 70 to 700 cm~! and, therefore, Rc ~ R, < R, = 10a.

In conclusion it should be pointed out that in case when the donor and accep-
tor molecules interact with different phonon branches the correction factor y(4))
is equal to unity y () = 1 at an arbitrary distance |n — m/.

4. Conelusions

In the present paper the correction factor to the overlap integral in optical
spectra is calculated for both cases of interaction of donor and acceptor elec-
tronic excitations with acoustic and optical phonons. From the analysis of
the electronic excitation energy transfer rate inade above it follows that the

n
above-mentioned correction factor y(t,) == exp [(l"— iml—> ] is important at
distances of some lattice constants (B, = 2¢ to 4a). These values of R, are
small as compared to the actual values of the characteristic transfer radius £,
which, as a rule, is close to R, = 10a. Therefore the conclusion made in [6] of
a very important role of this correction factor in the FGD theory scems to be
an overestimation for usual experimental situations.
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However, the use of the FGD formula in the sensitized luminescence theory
in binary solid solutions for

a) calculation of the diffusion coefficient,
b) calculation of the transfer efficiency from a host substance to acceptor

molecules when the diffusion coefficient is sufficiently large (Dt > R,)
may lead to significant uncertainties.
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