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a b s t r a c t

The theory on the intensities of 4f-4f transitions introduced by B.R. Judd and G.S. Ofelt in 1962 has

become a centerpiece in rare-earth optical spectroscopy over the past five decades. Many fundamental

studies have since explored the physical origins of the Judd–Ofelt theory and have proposed numerous

extensions to the original model. A great number of studies have applied the Judd–Ofelt theory to a

wide range of rare-earth-doped materials, many of them with important applications in solid-state

lasers, optical amplifiers, phosphors for displays and solid-state lighting, upconversion and quantum-

cutting materials, and fluorescent markers. This paper takes the view of the experimentalist who is

interested in appreciating the basic concepts, implications, assumptions, and limitations of the Judd–

Ofelt theory in order to properly apply it to practical problems. We first present the formalism for

calculating the wavefunctions of 4f electronic states in a concise form and then show their application

to the calculation and fitting of 4f-4f transition intensities. The potential, limitations and pitfalls of the

theory are discussed, and a detailed case study of LaCl3:Er3þ is presented.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

It has been 50 years since the publication of the famous papers
by Judd [1] and Ofelt [2] on the intensities of optical transitions in
rare-earth ions. Their work, which we today refer to as the Judd–

Ofelt theory, has become a centerpiece of rare-earth spectroscopy
as evidenced by the more than 3500 citations each of Judd’s and
Ofelt’s papers. The great appeal of the Judd–Ofelt theory is in its
ability to predict oscillator strengths in absorption and lumines-
cence, luminescence branching ratios, excited-state radiative life-
times, energy-transfer probabilities, and estimates of quantum
efficiencies by using only three parameters, O(l) (l¼2,4,6).
Computational power is cheap today, and this easily masks the
complex and diverse mathematical concepts as well as the highly
laborious calculations underlying the Judd–Ofelt theory. Its devel-
opment in the absence of computers in the late 1950s and early
1960s was an exquisite feat not only by Judd and Ofelt but also by
the many that laid the foundation for their work. The introduction
of the Judd–Ofelt theory 50 years ago has been a true and lasting
breakthrough for the field of rare-earth spectroscopy.

Brian Judd’s interest in the topic was first sparked while he
was a graduate student at Oxford University in the early 1950s
ll rights reserved.

ease LA-UR-12-23438.
[3,4]. There, his roommate D. Bijl gave him a copy of the 1947
thesis of Hoogschagen from the University of Leiden on the
absorption spectra of the rare earths in aqueous solution [5,6],
and he also immersed himself in the earlier work by van Vleck on
the origin of optical transitions in rare-earths [7,8]. In Judd’s 1955
thesis on rare-earth double-nitrates, however, he omitted his
work on the transition intensities because it seemed too spec-
ulative to him at the time [3]. In subsequent years, Judd learned
about the tensorial techniques and the theory of Lie groups that
Racah had developed in the late 1940s. He started applying
Racah’s mathematical and group theoretical principles to the rare
earths. During a yearlong stay with Eugene Wigner at the
University of Chicago, he succeeded in calculating the reduced
matrix elements of the U(k) (k¼2,4,6) single-electron tensor (see
Section 2.2), which characterizes electric-dipole induced 4f24f
transition intensities. Meanwhile, Brian Wybourne at Johns Hop-
kins University published the diagonalization of the spin–orbit
matrices of Nd3þ and Er3þ in the early 1960s [9,10]. This allowed
Judd to use the respective wavefunctions for a more accurate
calculation of transition intensities in terms of three intensity
parameters, which Axe later denoted as O(l) [11] and we today
refer to as the Judd–Ofelt intensity parameters. Judd’s work during
this decade led to his seminal 1962 paper on the optical absorp-
tion intensities of rare-earth ions [1] and his 1963 book on
operator techniques in atomic spectroscopy [12]. Independently
and in parallel, Wybourne’s student George Ofelt had developed
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a model of the intensities of crystal spectra of rare-earth ions [2]
that was structurally similar to that of Judd. Together, Judd’s and
Ofelt’s 1962 papers became known as the Judd–Ofelt theory, a
term that was first coined by Weber in 1967 [13]. The theory
however was already being applied in the mid-1960s by Axe [11]
and Krupke et al. [14,15] to analyze the optical spectra of rare-
earth-doped ethylsulfates, yttria, and LaF3.

In the five decades since, there have been hundreds of studies
using the Judd–Ofelt theory to analyze optical spectra of all the
rare earths in a plethora of compounds. There have also been
various important advances on the theoretical side that have led to
several modified Judd–Ofelt theories over the years. A rigorous
derivation of the mathematical foundations of the Judd–Ofelt
theory and a comprehensive survey of its practical applications
to rare-earth-doped materials is clearly beyond the scope of a
review article. Such extensive reviews have been given in the past
[16,17], and they serve as a valuable resource for more detailed
studies of the topic. Instead, this paper takes the view of the
Fig. 1. Flowchart for the calculation of 4f intermediate coupling (IC) wavefunctions, Ju

inputs (red), experimental inputs (blue), numerical procedures (grey), and outputs (gree

matrix element.
experimentalist who is interested in appreciating the basic con-
cepts, implications, assumptions, and limitations of the theory in
order to properly apply it to practical problems. The simplicity and
great predictive capability of the Judd–Ofelt theory has spurred its
widespread use; this simplicity however is quite deceptive. One
often overlooked fact is that the theory builds on reduced matrix
elements of the U(k) and LþgS tensor operators (see Section 2.2),
which in turn directly depend on the wavefunctions of the
involved electronic states. Therefore, the proper application of
the Judd–Ofelt theory first requires the calculation of high-
quality wavefunctions for the material system at hand which then
serve as the basis for the Judd–Ofelt intensity calculation. In fact,
the calculation of wavefunctions and corresponding reduced
matrix elements is usually the most challenging and laborious
aspect of using the Judd–Ofelt theory. Many studies however have
glanced over this fact and have used tabulated reduced matrix
elements that were derived for other material systems. While this
zero-order approach often yields results of the correct order of
dd–Ofelt intensity parameters, and derived quantities. The colors denote tabular

n). References to equations and tabular works are indicated. REM denotes reduced
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magnitude, it generally fails to produce results that allow for
quantitative comparison with and physically correct interpretation
of the experiment. Other aspects that warrant closer examination
are the labeling conventions for and assignments of 4f excited
states, the effect of refractive index dispersion, and the type of
least-squares fitting used in the calculations.

In this paper we present a concise collection of all equations
needed for calculating 4f wavefunctions in the intermediate
coupling approximation (Section 2), describe the essence of the
basic Judd–Ofelt theory and its application to experimental data
(Section 3), and illustrate the approach with the exemplary case
of LaCl3:Er3þ (Section 4). Our goal is to provide the reader with a
useful tool set for practical work and, together with an extensive
bibliography, offer a gateway into the more comprehensive
original literature.
2. Theoretical background

To fully appreciate the potential and limitations of the Judd–
Ofelt theory as well as to properly apply the theory to practical
problems, it is important to gain a basic understanding of the
larger context of the Judd–Ofelt theory, the nature of 4f electronic
wavefunctions, and the associated calculus. While the underlying
quantum mechanics of atomic spectra in general and of rare
earths in particular had been solved by the 1960s [12,18–25], the
respective original mathematical texts are often difficult to grasp
Fig. 2. L–S coupling for the [Xe]4f2 electron configuration. There are 28 ways of arrang

those li arrangements there are two or four possible ways of arranging the spins si. This r

angular momentum L¼
P

li¼�6, y, 6.
for the experimentalist. As a result, many applied rare-earth
spectroscopy studies resorted to applying existing computer
codes, sometimes with insufficient appreciation for the limita-
tions of the theory and the physical meaning of characteristic
parameters. The purpose of this section, therefore, is to present
the essence of the formalism in a concise format suited for the
practical application of the theory. It is beyond the scope of this
review to cover many of the more fundamental quantum-
mechanical and group-theoretical aspects or to even attempt to
provide rigorous mathematical proofs of the formulae. We pro-
vide here, however, a self-consistent set of all the equations
necessary for the calculation of 4f wavefunctions and oscillator
strengths of 4f24f transitions in the context of the Judd–Ofelt
theory. The interested reader may find this section a useful
starting point for the study of the original literature. The flow-
chart shown in Fig. 1 captures the structure of the calculations
and will serve as a guide throughout the following sections.

2.1. Electronic states of the [Xe]4fN electron configurations

The 3þ oxidation state is by far the most common for rare-
earth (RE) ions in condensed matter. Some of the rare earths also
form stable compounds in the 2þ (e.g. Nd, Sm, Eu, Dy, Tm and Yb)
and 4þ (e.g. Ce, Pr, Nd, Tb and Dy) oxidation states. Here we shall
only focus on RE3þ ions. Their electron configuration is [Xe]4fN,
where N runs from 1 (Ce3þ) to 13 (Yb3þ) along the series of RE
ions. The 4f-orbitals are empty for La3þ (N¼0) and filled for Lu3þ
ing the two electrons (black dots) among the 7 possible li values, and for each of

esults in a total of 98 (si, li) microstates with total spin S¼
P

si¼�1,y,1 and orbital
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(N¼14), and these ions therefore do not have any 4f24f transi-
tions. For a given [Xe]4fN electron configuration, one can consider
the N 4f electron spins si and the N 4f electron orbital angular
momenta li to combine separately to form a total spin angular
momentum S¼

P
si with a quantum number MS¼�S, y, S and

total orbital angular momentum L¼
P

li with a quantum number
ML¼�L, y, L, respectively, as a result of the electrostatic
(Coulomb) interaction between the 4f electrons. The fact that
electrons are fermions (particles having half-integer spin)
restricts the possible (si, li, msi

and mli ) combinations according
to Pauli’s exclusion principle. For a single 4f electron, one has
msi
¼ 71=2 and mli ¼�3,. . .,3 and, thus, for a 4fN electron system

the maximum values MS ¼�N=2,. . .,N=2 and ML¼�3N, y, 3N.
One can construct an L–S matrix by finding all possible combina-
tions of msi

and mli and tallying up the respective MS and ML. This
is shown in its entirety in Fig. 2 for the example of the [Xe]4f2

electron configuration, which consists of a total of 98 possible
arrangements (microstates) of the spin and orbital angular
momenta. The number Nstates of possible microstates for a [Xe]4fN

electron configuration is given by Nstates ¼ 14!=N! 14�Nð Þ!. All
combinations that give rise to the same angular momentum
quantum numbers are denoted by the term symbol 2Sþ1L. Here
the letter symbol L¼S, P, D, F, G, H, I, K, L, M, N, O and Q, stands for
L¼0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, respectively, and (2Sþ1)
is the spin multiplicity which is referred to as a singlet, doublet,
triplet, quartet, quintet, for (2Sþ1)¼1, 2, 3, 4, 5, y. The 2Sþ1L

terms are then found by successively subtracting the correspond-
ing microstates from the L–S matrix (see Fig. 3). This procedure
can be used to find the 2Sþ1L terms of any electron configuration,
however it quickly becomes very laborious as the number of f-
electrons increases. Hund’s rule determines the ground term of
any electron configuration as having both the greatest spin
multiplicity and the greatest value of L (of the terms with the
Fig. 3. Derivation of all L–S terms of the [Xe]4f2 electron configuration. The first L–S ma

are then obtained by successively subtracting the corresponding microstates (denoted
greatest spin). Note that a [Xe]4fN (N47) electron configuration
produces the same 2Sþ1L terms as the respective conjugate
[Xe]4f14�N electron configuration because it can simply be viewed
as consisting of (14�N) 4f holes. That is, the types of 2Sþ1L terms are
mirrored about the 4f7 electron configuration, however not their
energy sequence, and only the ground terms are the same for the
conjugate configurations. For 3rNr11 there are some 2Sþ1L terms
having the same L and S and, therefore, a sequential index t, often
called seniority quantum number, is added to distinguish these terms,
i.e. 2Sþ1LðtÞ. It is conventional to follow the respective group-
theoretical definitions introduced by Racah [21] and tabulated by
Nielsen and Koster [26]. For example, the [Xe]4f3 electron config-
uration of Nd3þ produces two terms with S¼ 1=2 and L¼5, and the
respective terms are labeled 2H(1) and 2H(2). These terms differ in
the so-called parent terms of the preceding [Xe]4f2 electron config-
uration (see Section 2.2), which give rise to these 2H(1) and
2H(2) terms after the third electron is added.

The next contribution to consider is the spin–orbit interaction,
which results from the interaction of the intrinsic magnetic
moment of the electron with the magnetic field created by its
motion around the nucleus [22]. The magnitude of the spin–orbit
interaction increases with the nuclear charge as Z4 [22]. While
spin–orbit coupling (Hso) is small compared to the electrostatic
interaction between the 4f electrons (He) for the light transition
metals, it becomes comparable to He for the rare earths. As the
relative magnitude of the spin–orbit coupling increases, both
S and L cease to be good quantum numbers, and the total angular
momentum J must be introduced. There are two extreme
approaches to accomplish this coupling of L and S to form the
resultant J. For HsoooHe, the L–S (or Russel–Saunders) coupling
scheme is appropriate where the spin and orbital angular
momenta couple separately, i.e. S¼

P
si and L¼

P
li (as shown in

Figs. 2 and 3), and the total angular momentum is obtained as
trix summarizes all 98 (si, li) microstates found in Fig. 2. The individual 2Sþ1L terms

by black frames).



Table 1
Number of 2Sþ1L terms, 2Sþ1Lj multiplets, and 2Sþ1LJ(MJ) crystal-field levels in trivalent rare-earth ions (RE3þ) with [Xe]4fN electron configuration. The electrostatic

interaction between the 4f electrons gives rise to SL terms which further split into SLJ multiplets under the influence of the spin-orbit interaction. They split even further

into SLJM crystal-field levels under the influence of a static crystal field and/or magnetic field [41].

Ce3þ(Yb3þ) Pr3þ(Tm3þ) Nd3þ(Er3þ) Pm3þ(Ho3þ) Sm3þ(Dy3þ) Eu3þ(Tb3þ) Gd3þ

4f electrons (4f holes) 1 2 3 4 5 6 7

SL 1 7 17 47 73 119 119

SLJ 2 13 41 107 198 295 327

SLJM 14 91 364 1001 2002 3003 3432
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J¼LþS. For Hso44He, the jj coupling scheme applies where the
individual spins and orbital angular momentum are coupled first,
i.e. ji¼siþ li, and the total angular momentum is then obtained as
J¼
P

ji. The rare earths represent an ‘‘intermediate coupling’’ case
where HsoEHe. The L–S coupling scheme is commonly used for
RE3þ . The spin–orbit interaction causes the 2Sþ1L terms of a
[Xe]4fN configuration to split into several 2Sþ1LJ multiplets with
different energies, where J¼9L�S9,9L�Sþ19,y,9LþS9. The termi-
nology used here is that of Judd [12]. It is worthwhile noting that
for the less-than-half filled 4f electron configurations, the ener-
gies of the J states within the same 2Sþ1LJ manifold increase with
increasing J, whereas the trend is inverted for the more-than-half
filled configurations. For example, for the Pr3þ ion (4f2) the 3HJ

(J¼4,5,6) levels in order of increasing energy are 3H4, 3H5, 3H6. For
the conjugate 4f12 configuration (Tm3þ), the same levels are
ordered as 3H6, 3H5, 3H4. Table 1 summarizes the electron
configurations, number of 2Sþ1L terms, and the number of 2Sþ1LJ

multiplets for all RE3þ ions. The treatment so far only yields the
type of 2Sþ1LJ multiplets for a given [Xe]4fN electron configuration
but not their energy sequence, which requires a quantitative
evaluation of the electrostatic and spin–orbit interactions. This
will be the task in Section 2.3.

The 2Sþ1LJ multiplets derived above represent the energy
levels of the RE3þ ion in the spherical symmetry of free space,
the so-called ‘‘free ions’’. A further and much smaller energy
splitting occurs when the RE3þ ion is placed into the lower-
symmetry electrostatic field that is produced by the charges of
the neighboring ions in a solid. Depending on the exact point
symmetry of the electrostatic field at the RE3þ site, a crystal-field
splitting occurs which lifts some or all of the (2Jþ1) degeneracy
in each of the 2Sþ1LJ multiplets. Note that independent of the
point symmetry of the electric field, odd-electron systems will
retain a minimum of two-fold degeneracy in each crystal-field
level due to Kramer’s degeneracy [27] which can only be lifted by
a magnetic field. In contrast, the (2Jþ1) degeneracy can be
completely lifted in even-electron systems by a crystal-field of
sufficiently low symmetry. The Judd–Ofelt theory was originally
formulated within the context of 2Sþ1LJ multiplets. We shall
therefore neglect crystal-field interactions in the following and
restrict the discussion to 2Sþ1LJ multiplets and transitions
between them. We will see in Section 3, however, that crystal-
field interactions are the essential ingredient that gives intensity
to the otherwise parity-forbidden 4f-4f transitions.

2.2. Wigner symbols and reduced matrix elements of tensor

operators

The previous section has illustrated that the systems of
interest comprise multiple 4f electrons. At the heart of the
formalism therefore lies the coupling of angular momenta of
single electrons in order to construct eigenstates of the multi-
electron system. For example, two 4f electrons, each with a well-
defined angular momentum of l¼3, interact by Coulomb forces to
form a total angular momentum of the two-electron system.
Likewise, the spin and orbital angular momentum of a 4f electron
can couple by spin–orbit interaction. The mathematical treatment
of coupling two angular momenta gives rise to the so-called
Wigner 3-j symbol, which is related to the Clebsch–Gordan
coefficient [25] and which is given by [19,28]

a b c

a b g

 !

¼ �1ð Þ
a�b�g ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D a,b,cð Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþað Þ! a�að Þ! bþbð Þ! b�bð Þ! cþg
� �

! c�g
� �

!
q

�
X

t

�1ð Þ
t

xðtÞ
ð1Þ

where x(t)¼t!(c�bþtþa)!(c�aþt�b)!(aþb�c�t)!(a�t�a)!
(b�tþb)!, the sum is taken over all t for which all factorials in
x(t) are Z0, and the triangle coefficient is given by D a,b,cð Þ ¼

aþb�cð Þ! a�bþcð Þ! �aþbþcð Þ!= aþbþcþ1ð Þ! [29]. Coupling three
angular momenta gives rise to the so-called Wigner 6-j symbol
[24], which is a sum of products of 3-j symbols and evaluates to
[12,30]

j1 j2 j3

J1 J2 J3

8<
:

9=
;¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D j1,j2,j3

� �
D j1,J2,J3

� �
D J1,j2,J3

� �
D J1,J2,j3

� �q

�
X

t

�1ð Þ
t tþ1ð Þ!

f ðtÞ
ð2Þ

where D(a,b,c) is the aforementioned triangle coefficient, the sum
is taken over all t for which all factorials in f(t)are Z0, and

f ðtÞ ¼ t�j1�j2�j3

� �
! t�j1�J2�J3

� �
! t�J1�j2�J3

� �
! t�J1�J2�j3

� �
!

� j1þ j2þ J1þ J2�t
� �

! j2þ j3þ J2þ J3�t
� �

! j3þ j1þ J3þ J1�t
� �

!

The various interactions in the multi-electron system are
described by tensor operators T ðkÞq , which transform like the
spherical harmonics Yk,q(y,f) (see Section 2.3) [12]. The asso-
ciated theory of tensor operators has been pioneered by Racah
[19,21]. Throughout the calculation of RE3þ energy levels and
transition intensities, the need arises to evaluate matrix elements
of various tensor operators that act on only one part of the
system, such as only the orbital angular momentum or only on
the spin. Application of the Wigner–Eckart theorem [24,31]
facilitates the calculation of those matrix elements enormously
by making use of so-called reduced matrix elements (RME). The
mathematical formulation of this theorem is:

/j0m0a09TðkÞq 9jmaS¼ �1ð Þ
j0�m0

j0 k j

�m0 q m

0
@

1
A/j0a099TðkÞ99jaS ð3Þ

where T ðkÞq is a tensor operator of rank k whose matrix element is
calculated between two states j0m0a0

� �� and jma
�� �

, with the j
0

, j and
m
0

, m being the quantum numbers of the total momenta and their
z-components, respectively. All other (if needed) quantum num-
bers are denoted by a and a

0

. The double bar entry on the right-
hand side is the RME, which depends neither on the magnetic
quantum numbers m

0

, m nor on the q-component of the tensor
operator TðkÞq . The main advantage of the Wigner–Eckart theorem
is that any matrix element of a given tensor operator can be
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calculated in a simple way by multiplying the Wigner 3j-symbol
in Eq. (3) with the corresponding RME, which has to be calculated
only once for a particular combination of T ðkÞq , j

0

, and j.
Three tensor operators U(k), V(1x), and LþgS and their respec-

tive reduced matrix elements are of particular importance for
spectroscopic calculations. U(k) arises in the calculation of
electric-dipole transition intensities. Its reduced matrix element
is given by [25]

/lNSL99UðkÞ99lNSL0S¼N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ1ð Þ 2L0 þ1

� �q

�
X

c lN�1
� � lN�1SL

���lNSL
� 	 L l L

l L0 k

( )
�1ð Þ

Lþ Lþ lþk

ð4Þ

Here one makes use of the concept of fractional parentage, which
was introduced by Racah in 1943 [20]. This elegant approach
expresses the states of a 4fN electron configuration as linear
combinations of the states of the preceding 4fN�1 electron config-
uration angular-momentum-coupled to one additional 4f electron.
The coefficients of these linear combinations are the coefficients of

fractional parentage, lN�1SL9lNSL
� 	

, and they have been explicitly

calculated by Nielsen and Koster [26] within the definitions of Racah
[20]. In Eq. (4), the sum extends over all parent states of /lNSL9,
which are denoted by c(lN�1) and the respective quantum numbers

S and L. Note that for the conjugate 4f14�N electron configuration
one has /l14�NSL99U(k)99l14�NS

0

L
0

S¼�(�1)k/lNSL99U(k)99lNS
0

L
0

S [26].
Coupling S and L to J then yields [32]:

/lNSLJ99UðkÞ99lNSL0J0S¼ �1ð Þ
SþL0 þ Jþk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jþ1ð Þ 2J0 þ1

� �q

�
J J0 k

L0 L S

( )
/lNSL99UðkÞ99lNSL0S ð5Þ

The V(1x) tensor operator arises in the calculation of matrix
elements of the spin–orbit interaction operator, and its reduced
matrix element is given by [25]:

/lNSL99V ð1xÞ99lNS0L0S¼N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s sþ1ð Þ 2sþ1ð Þ 2Sþ1ð Þ 2Lþ1ð Þ 2S0 þ1

� �
2L0 þ1
� �q

�
X

c lN�1
� � lN�1SL

���lNSL
� 	 S S0 1

s s S

( )
L L0 x

l l L

( )
�1ð Þ

SþLþSþLþ sþ lþxþ1

ð6Þ

where s¼ 1=2 and l¼3 (for f-electrons). Note that for the
conjugate 4f14�N electron configuration one has /l14�NSL

99V(1x)99l14�NS
0

L
0

S¼(�1)x/lNSL99V(1x)99lNS
0

L
0

S [26].
Finally, reduced matrix elements of LþgS arise in the calculation

of magnetic-dipole transition intensities, and they are given by [25]

/lNSLJ99LþgS99lNSLJ0S¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J Jþ1ð Þ 2Jþ1ð Þ

p
ð7Þ

for J
0

¼ J and

/lNSLJ99LþgS99lNSL J�1ð ÞS

¼ g�1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SþLþ Jþ1ð Þ JþL�Sð Þ JþS�Lð Þ SþL�Jþ1ð Þ

4J

s
ð8Þ

for J
0

¼ J�1, where g ¼ 2:002319304362 which is the g-factor of the
electron.

2.3. The intermediate coupling approximation

The electrostatic (Ĥe) and spin–orbit (Ĥso) interactions are domi-
nant in RE3þ ions. Detailed studies of atomic and crystal-field
interactions in RE3þ-doped solids have shown that the combined
magnitude of Ĥe and Ĥso amounts to 80–90% of all interactions
[33–39]. The other 10–20% are due to higher-order atomic (e.g. inter-
configurational and two-body spin–orbit interactions) and crystal-
field interactions. These higher-order contributions are important if a
quantitative description of crystal-field energy levels and transitions
between them is sought. In the context of the Judd–Ofelt theory
however, considering only Ĥe and Ĥso offers a useful first-order
description known as the intermediate coupling approximation [40].

The Hamilton operator corresponds to the total energy of the
system and in the intermediate coupling approximation can be
written as

Ĥ¼ ĤeþĤso ð9Þ

The energies, E, of the respective 2Sþ1LJ multiplets are then found
by solving the time-independent Schrödinger equation:

ĤC¼ EC ð10Þ

where C¼(C1, y, Cz) represents the wavefunctions of all z 2Sþ1LJ

multiplets of the 4f electron configuration at hand (see Table 1). This
multi-electron Schrödinger equation has no exact solution. The
common approach for solving Eq. (10) is to use the central-field
approximation [12,25] in which each electron is assumed to move
independently in the field of the nucleus and an averaged spherical
central field produced by the other electrons, �U rið Þ=e. This allows
expression of the wavefunctions C in terms of the spherical harmo-
nics Yl,ml

y,fð Þ, i.e. C¼ RnlðrÞYl,ml
y,fð Þ, where Rnl(r) is a radial function

that depends on U(r) [12]. It is illustrative to write the intermediate
coupling eigenvalue equation [Eq. (10)] in explicit matrix form:

Ĥ11 Ĥ12 � � � Ĥ1z

Ĥ21 Ĥ22 � � � Ĥ2z

^ ^ & ^

Ĥz1 Ĥz2 . . . Ĥzz

2
66664

3
77775

C1

C2

^

Cz

2
6664

3
7775¼

E1

E2

^

Ez

2
6664

3
7775

C1

C2

^

Cz

2
6664

3
7775 ð11Þ

where each matrix element is given by Ĥij ¼ Ĥ
ðijÞ

e þĤ
ðijÞ

so and the
matrix is square (z� z) and symmetrical, i.e. Ĥij ¼ Ĥji. Recall that this
general type of eigenvalue equation is solved by calculating each
matrix element Ĥij of the Hamiltonian matrix Ĥ and then diagonaliz-
ing the matrix to obtain both the energies as the corresponding
eigenvalues and the coefficients of the intermediate coupling wave-
functions. The matrix elements of the electrostatic interaction (Ĥe)
and the spin–orbit interaction (Ĥso) are presented in the following.

2.3.1. Electrostatic interaction Ĥe

The Hamilton operator for the electrostatic interaction is:

Ĥe ¼
e2

rij
p

X
k ¼ 0,2,4,6

CðkÞi CðkÞj ð12Þ

where the expansion is in terms of the tensor operators
CðkÞq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p= 2kþ1ð Þ

p
Ykq, which are a function of the spherical

harmonics Ykq [12]. The matrix elements of Ĥe in Eq. (11) are
then given by [12]:

/lNSL9CðkÞi � C
ðkÞ
j 9lNS0L0S¼ dSS0dLL0 �1ð Þ

4l
�1ð Þ

L 2lþ1ð Þ
2

�
X

k ¼ 0,2,4,6

l k l

0 0 0

 !2
l l k

l l L

( )
FðkÞ

ð13Þ

which for f-electrons (l¼3) becomes:

/4fNSL9CðkÞi � C
ðkÞ
j 94f NS0L0S¼ dSS0dLL049 �1ð Þ

L

�
X

k ¼ 0,2,4,6

3 k 3

0 0 0

 !2
3 3 k

3 3 L

( )
FðkÞ

ð14Þ

In Eq.(14), the /4fNSL9 and 94fNS
0

L
0

S are the two interacting states,
and the F(k) are the Slater integrals. The sum is limited to k¼0, 2,
4 and 6 because for all other k the 3j and/or 6j symbols are zero. It



Table 2
Complete set of wavefunctions and respective energies for LaF3:Tm3þ calculated in

the intermediate coupling approximation (F(2)¼445.040 cm�1, F(4)¼63.9238 cm�1,

F(6)¼7.60360 cm�1, z¼2636 cm�1 [35]). The wavefunction components are sorted in

descending magnitude, and the purity indicates the magnitude of the 2Sþ1LJ state that

is obtained for z-0.

No. 2Sþ1LJ

(z-0)

Intermediate coupling wavefunction Energy

(cm�1)

Purity

(%)

1 3H6 0:995393H6Sþ0:0970891I6S 0 99.1

2 3F4 0:788993F4Sþ0:549791G4S�0:274893H4S 5184 62.2

3 3H5 1:000093H5S 8223 100.0

4 3H4 0:754893H4S�0:531193F4S�0:384991G4S 12359 57.0

5 3F3 1:000093F3S 13973 100.0

6 3F2 0:880793F2S�0:451991D2S�0:141993P2S 14614 77.6

7 1G4 0:741491G4Sþ0:595693H4S�0:309293F4S 20804 55.0

8 1D2 0:668593P2Sþ0:612591D2Sþ0:422093F2S 27299 37.5

9 1I6 0:995391I6S�0:097193H6S 33414 99.1

10 3P0 0:974391P0S�0:225191S0S 34267 94.9

11 3P1 1:000093P1S 35058 100.0

12 3P2 0:730193P2S�0:648691D2S�0:215293F2S 37390 53.3

13 1S0 0:974391S0Sþ0:225193P0S 75906 94.9
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is important to note that since Ĥe is an electric interaction it
cannot act on the spin [32], and therefore the matrix element is
zero if SaS

0

and LaL
0

, as denoted by the Kronecker dSS0 and dLL0 ,
respectively. There are two notations F(k) and F(k) for the Slater
integrals commonly found in the literature, and the respective
conversions are [12]:

Fð0Þ ¼ Fð0Þ

Fð2Þ ¼ Fð2Þ=225

Fð4Þ ¼ Fð4Þ=1089

Fð6Þ ¼ 25Fð6Þ=184041 ð15Þ

An additional complication in using Eq. (14) arises for 4fN

electron configurations with 3rNr11. As shown in Section 2.1,
for these configurations there are some 2Sþ1L terms with the same L

and S which are distinguished by an additional sequential index t.
This produces off-diagonal matrix elements in Eq. (11). This problem
was solved by Nielsen and Koster [26] who have applied the
respective classification of states by Racah [21] to Eq. (14) and have
conveniently and consistently tabulated all electrostatic matrix
elements for all 4fNelectron configurations in the form [26]:

/4fNSL9Ĥe94f NS0L0S¼
X3

k ¼ 0

ekEðkÞ ð16Þ

In Eq. (16), the ek are the coefficients tabulated in Ref. [26], and
the E(k) parameters relate to the Slater integrals [Eq. (15)]
according to [21]:

Eð0Þ ¼ Fð0Þ�10Fð2Þ�33Fð4Þ�286Fð6Þ

Eð1Þ ¼ 70Fð2Þ þ231Fð4Þ þ2002Fð6Þ
� �

=9

Eð2Þ ¼ Fð2Þ�3Fð4Þ þ7Fð6Þ
� �

=9

Eð3Þ ¼ 5Fð2Þ þ6Fð4Þ�91Fð6Þ
� �

=3 ð17Þ

Given a set of Slater integrals F(2), F(4), F(6), the matrix elements of
Ĥe in Eq. (3) can now be readily evaluated by applying Eqs. (16 and
17) and using the electrostatic matrix tables by Nielsen and Koster
[26]. Note that the F(0) Slater integral is usually omitted as it simply
produces a uniform shift of the energies of all the states of the
configuration, which is irrelevant when the energies are reference to
the ground-state multiplet of the [Xe]4fN electron configuration [41].

2.3.2. Spin–orbit interaction Ĥso

The Hamilton operator for the spin–orbit interaction is:

Ĥso ¼
XN

i ¼ 1

x rið Þ si � lið Þ ð18Þ

where ri is the radial coordinate of the ith electron, si and li are the
spin and orbital angular momentum, respectively, and x rið Þ ¼

_2=m2c2ri

� 	
dU rið Þ=dri


 �
, where U(ri) is the central field potential

[22]. The spin–orbit interaction is not diagonal in the basis set of L

and S used in the L–S coupling scheme, and Ĥso will therefore
contribute off-diagonal elements to the Ĥ-matrix in Eq. (11).
Specifically, Ĥso mixes all states that have the same J [25]. The
matrix elements of Ĥso in Eq.(18) are then given by [12,25,32]:

/4f NSLJ9Ĥso94f NS0L0J0S¼ z �1ð Þ
JþLþS0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ1ð Þ 2lþ1ð Þ

p
�

S S0 1

L0 L J

( )
/lNSL:Vð11Þ:lNS0L0S ð19Þ

where l¼3 for f-electrons, the reduced matrix element
/lNSL99V(11)99lNS

0

L
0

S is given by Eq. (6), and z is the spin–orbit
coupling parameter which is a constant for all the states of a given
4f configuration in a given material [22].
2.3.3. Intermediate coupling wavefunctions and 4f energy levels

We are now in a position to calculate the matrix elements of

Ĥ¼ ĤeþĤso in Eq. (11) using Eqs. (16 and 19). In the 94fNSLJS

basis set, the Ĥ-matrix has off-diagonal elements that arise from
mixing of different states with the same J by spin–orbit coupling
as well as from mixing of states with the same S and L by
electrostatic interaction. This is now merely a tedious computa-
tional task, and there is no fundamental obstacle in calculating all
energies of all the RE3þ 4f states given a set of material-specific

F(k) and z parameters. Numerical diagonalization of the square

symmetric Ĥ-matrix solves this eigenvalue problem [Eq. (11)] and

yields the wavefunctions and energies of each 94fNSLJS state.

Robust matrix diagonalization algorithms such as the Jacobi
method can be employed [42]. The matrix diagonalization yields

the intermediate coupling wavefunction of each 94fNSLJS0 multi-

plet, which is expressed as a linear combination of all other states
in the configuration having the same J and being mixed by spin–
orbit interaction, i.e.

94fNSLJS0 ¼
X

i

ci94fNS0L0JS ð20Þ

where
P

c2
i ¼ 1. The prime has been added here to emphasize

that the actual 94fNSLJS0 wavefunction is not the pure 94fNSLJS
wavefunction anymore. This prime is usually omitted, and one
therefore has to be aware that the 2Sþ1LJ multiplet labels do not
convey the complete nature of the wavefunction. For example, the
pure 4I9/2 wavefunction of Er3þ (4f11) in the absence of spin–orbit

coupling (z¼0) is ‘‘degraded’’ to

94I9=2S
0
¼ �0:408394F9=2S�0:0202394G9=2S

þ0:673194I9=2S�0:312292Gð1Þ9=2Sþ0:252192Gð2Þ9=2S

�0:208092Hð1Þ9=2Sþ0:419092Hð2Þ9=2S ð21Þ

in the actual intermediate coupling case of an Er3þ-doped
aluminosilicate glass (F2¼433.258 cm�1, F4¼62.3544 cm�1,

F6¼7.33668 cm�1, and z¼2376 cm�1)[43]. Note in Eq. (21) that

the actual 94I9=2S
0 wavefunction only retains (0.6731)2, i.e. 45.3%

of its 94I9=2S origin as a result of spin–orbit coupling, and all the

other J¼ 9=2 multiplets of the 4f11 configuration are admixed to
various degrees. In some rare cases this can lead to confusion in the
labeling of the multiplets, especially for ions towards the end of the



Fig. 4. Energy level diagram for the 2Sþ1LJ multiplets of all RE3þ ions. The calculated diagram on the left shows the complete set of 2Sþ1LJ multiplets for each RE3þ ion [99].

The classical ‘‘Dieke’’ diagram [65] on the right was compiled in the 1960s from experimental observations. It shows the subset of 2Sþ1LJ multiplets with energies up to

40,000 cm�1, a range that is accessible in a typical optical spectroscopy experiment.
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rare-earth series where spin–orbit coupling is strong. Table 2 shows
the complete set of intermediate coupling wavefunctions of Tm3þ

calculated using the parameters for LaF3:Tm3þ [35] as an example
for the impact of strong spin–orbit coupling. Inspection of the
wavefunction components reveals that not all energy levels can be
assigned unambiguously. Two levels, No. 8 at 27299 cm�1 and No.
12 at 37390 cm�1, have the 3P2 state as the strongest component,
and its contribution amounts to 45% and 53%, respectively. In both
cases, the second component of the wavefunction arises from the
1D2 state with the partial weights of 38% and 42%, respectively. Even
in spite of such a strong mixture of these states induced by the spin–
orbit interaction, the state at 27299 cm�1 (No. 8) is labeled as 1D2,
whereas its higher energy counterpart is denoted as 3P2. This follows
the convention that the 2Sþ1LJ label shall designate the wavefunc-

tion that is obtained for z-0.
An extensive body of work from the 1950s through the 1970s

primarily by G.H. Dieke et al. [41,44–65], W.T. Carnall et al.
[35,66–82], and K.H. Hellwege et al. [83–98] has resulted in a
comprehensive survey, assignment, and calculation of all 94fNSLJS
energy levels up to 40,000 cm�1. This seminal body of work is
embodied in the famous ‘‘Dieke diagram’’ [65] shown in Fig. 4,
which has become the energy level scheme ‘‘work horse’’ used by
the community for spectroscopic work with RE3þ ions. Fig. 4 also
shows a recent calculation of the complete set of 2Sþ1LJ multiplet
energies for all RE3þ ions [99]. The great utility of the Dieke
diagram arises from the fact that the radial extent of the 4f
wavefunctions is small compared to the 5s and 5p wavefunctions,
i.e. the 4f electrons are shielded quite effectively from the effects
of the surrounding charges in a solid. This is a unique feature of
the rare-earth ions and, as one of its consequences, the 94fNSLJS
wavefunctions and associated energy levels are rather insensitive
to the chemical surroundings of the RE3þ ion. This manifests in the
spectrally narrow optical transitions and the small crystal-field
splittings for RE3þ ions in solids. The Dieke diagram therefore
provides an excellent first-order energy-level description for a wide
range of RE3þ-doped materials. We will see below however that for
a given RE3þ ion, the electrostatic and spin–orbit interactions can
vary as much as 720% from host to host. A careful determination of
the respective parameters for a given host-RE3þ combination is
therefore needed in order to obtain 4f wavefunctions that are of
sufficient quality for meaningful energy-level and transition-
intensity calculations.
2.3.4. Optimizing wavefunctions for a RE3þ-doped material

The weak interactions of the RE3þ with its surroundings affect
both the effective electrostatic and spin–orbit coupling strength
to some extent. For a RE3þ-doped material there is, therefore, a
set of electrostatic (F(2), F(4), F(6)) and spin–orbit (z) parameters
that are characteristic for this RE3þ and host material combina-
tion. In order to obtain the best 94fNSLJS intermediate coupling
wavefunctions for a specific RE3þ-doped material it is thus
necessary to fit these parameters to a set of experimental 2Sþ1LJ

multiplet energies. All too often in the literature this step of
optimizing electrostatic and spin-orbit parameters is forgotten,
not mentioned, or consciously omitted, and wavefunctions and
associated reduced matrix elements of another material (such as
LaF3:RE3þ or aqueous RE3þ) are implicitly or sometimes expli-
citly used from published tables instead. This may result in
unphysical Judd–Ofelt intensity parameters.

First, care must be taken in the experimental determination of
the 2Sþ1LJ multiplet energies, a deceptively trivial task. The chal-
lenge arises from the crystal–field interactions that are present in
any real system. These are not included in the Hamiltonian of Eq.
(9), and they cause a partial or complete splitting of each 2Sþ1LJ

multiplet into its 2Jþ1 components, depending on the RE3þ ion and
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the point symmetry at the RE3þ site. The degeneracy-weighted
average energy, i.e. barycenter energy, of a 2Sþ1LJ multiplet is given
by:

EB
2Sþ1LJ

� 	
¼

1

2Jþ1

X
i

giEi ð22Þ

where the sum runs over all crystal-field levels with energies Ei of
the 2Sþ1LJ multiplet, and gi is the crystal-field level degeneracy
(
P

gi¼2Jþ1). The EB
2Sþ1LJ

� 	
can be determined exactly by first

determining the energy and degeneracy of each crystal-field level of
each 2Sþ1LJ multiplet using low-temperature polarized absorption
and luminescence spectroscopy and then calculating the barycenter
energies according to Eq. (22). This approach is laborious and often
challenging and therefore well beyond the scope of most studies. It
is also not practical for amorphous systems such as RE3þ-doped
glasses that have significant inhomogeneous broadening, i.e. are not
characterized by a single set of crystal-field energies. Alternatively,
the EB

2Sþ1LJ

� 	
can be approximated from high-temperature polar-

ized absorption spectra (see Fig. 5). At sufficiently high tempera-
tures, all crystal-field levels of the initial state i are thermally
populated and, consequently, all crystal-field transitions from the
initial state i to the final state f contribute to the observed
absorption spectrum, e(E). By assuming equal thermal population
of the crystal-field levels in the initial state as well as equal oscillator
strength of all crystal-field transitions within the i-f transition,
EB

2Sþ1LJ

� 	
can be approximated by the energy at whichR EB

0 eðEÞdE¼ 0:5 in the measured polarization-weighted absorption
spectrum. Note that the integral is taken in the energy rather than
the wavelength domain in order not to distort the spectral distribu-
tion. Determining barycenter energies from high-temperature
absorption spectra however has its limitations. Total crystal-field
splittings of 2Sþ1LJ ground state multiplets typically range from
200–500 cm�1. While all crystal-field levels of the ground state will
be substantially populated at 300 K, their thermal population is far
from equal at any practical temperature. As a result, the absorption
spectra of transitions to the various excited-state multiplets will be
weighted more towards the respective higher-energy crystal-field
transitions, and the barycenter energy will be overestimated.

Finally, the electrostatic (F(2), F(4), F(6)) and spin–orbit (z)
parameters can be obtained by fitting calculated barycenter
energies to a set of experimental barycenter energies. This is
typically done as an unconstrained optimization, and procedures
such as the Downhill Simplex algorithm can be used [100]. Here
Fig. 5. Determination of the energy (Eif) for a measured transition from an initial

state (i) to a final state (f). Both states i and f are (2Jþ1)-fold degenerate in the

intermediate coupling approximation Ĥ¼ ĤeþĤso [Eq. (9)]. A real system also has

crystal-field interaction Ĥcf which lifts some or all of the (2Jþ1)-fold degeneracy

and causes each level to split (gray box). The transition energy Eif can be

approximated by the barycenter energy EB, at which the integrated absorption

cross sections of the low-energy side (EoEB, shown red) and of the high-energy

side (E4EB, shown blue) are equal (see Section 2.3.4). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)
one can choose to either minimize the absolute root-mean-square
(RMS) deviation

RMSabs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�p

Xn

i ¼ 1

Eexp
i �Ecalc

i

� 	2

vuut ð23Þ

or the relative RMS deviation

RMSrel ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�p

Xn

i ¼ 1

Eexp
i �Ecalc

i

Eexp
i

 !2
vuut

ð24Þ

between the calculated and experimental barycenter energies,
where n is the number of experimental barycenter energies and p

is the number of fit parameters (p¼4 in this case) [101]. It is
generally preferred to use RMSrel as to not skew the optimization
towards the higher-energy multiplets. Similarly, as we will see
later, RMSrel is preferably used when fitting the Judd–Ofelt
intensity parameters as to not skew the optimization towards
the highest-intensity transitions (see Section 3.1.2) [101].

2.3.5. Review of electrostatic and spin–orbit interaction parameters

A great number of studies have been performed over the past
decades aimed at modeling the RE3þ energy levels doped into
various host materials. Some of the studies used the simple
Hamilton operator shown in Eq. (9), while more sophisticated
studies included a variety of additional higher-order atomic as well
as crystal-field interactions. Fig. 6 shows the electro-
static (F(2), F(4), F(6)) and spin–orbit (z) interaction parameters for
182 RE3þ-doped compounds compiled from the literature
[13,14,33–39,51–57,62,71,73–75,94,102–147]. One can see that
all these parameters increase with an increasing number of 4f
electrons. This is due to (1) the enhanced Coulomb repulsion
between 4f electrons when moving from Ce to Yb and (2) the
increasing atomic number Z, since the spin–orbit interaction is
proportional to Z4 [22]. Recently, Tanner and Duan have given a
comprehensive analysis of the crystal-field and free-ion para-
meters for the entire series of rare-earth ions doped into
Cs2NaLnCl6, and they presented linear and quadratic fits of the
electrostatic (F(2), F(4), F(6)) and spin–orbit (z) interaction para-
meters as a function of the number of 4f electrons [148]. While
there are clear trends for each of the parameters along the RE3þ

series, the variation of the parameters for a given RE3þ ion for
different host materials is striking. The electrostatic parameters in
particular vary as much as 720% about their average depending
on the chemical environment the RE3þ ion is placed in. From Fig. 6

it is readily apparent that using a set of F(2), F(4), F(6) and z
parameters for a RE3þ ion in one host to describe the wavefunc-
tions of that RE3þ in another host can potentially be a poor choice.
For example, consider using the atomic parameters for LaF3:Er3þ in

an attempt to describe the /4I15=2 99U
ð2Þ992Hð2Þ11=2S intermediate

coupling reduced matrix element in Y2O2S:Er3þ (see Section 2.4):

LaF3:Er3þ: F2¼445.01 cm�1, F4¼68.140 cm�1, F6¼7.5269
cm�1, z¼2380 cm �1[137]

9/4I15=2 99U
ð2Þ992

Hð2Þ11=2S92
¼ 0:699872

Y2O2S:Er3þ: F2¼429.52 cm�1, F4¼64.293 cm�1, F6¼6.5218
cm�1, z¼2339 cm�1 [141]

9/4I15=2 99U
ð2Þ992

Hð2Þ11=2S92
¼ 0:595564

The use of LaF3:Er3þ parameters to describe Y2O2S:Er3þ would
overestimate the above squared reduced matrix elements by
17.5%, an error that would directly propagate into the Judd–
Ofelt intensity parameters (see Section 3). This illustration further
stresses the need to have good wavefunctions for a system at
hand before performing a Judd–Ofelt intensity calculation.



Fig. 6. Electrostatic (F(2), F(4), F(6)) and spin–orbit (z) interaction parameters for 182 RE3þ-doped compounds compiled from the literature (see Section 2.3.5 for references).

The studies included here performed a least-squares fit of a Hamiltonian including the electrostatic and spin–orbit interactions, and in many cases also higher-order atomic

and crystal-field interactions, to a set of experimental 2Sþ1LJ energies.
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2.4. Intermediate coupling reduced matrix elements

Recall that the reduced matrix elements of the various tensor
operators described in Section 2.3 were calculated in the context
of the pure 94fNSLJS wavefunctions, i.e. in the absence of spin–
orbit interaction. They now need to be evaluated in the inter-
mediate coupling approximation for a specific RE3þ-doped mate-
rial using the wavefunctions obtained in Section 2.3. Fitting of the
barycenter energies to a set of experimental 2Sþ1LJ multiplet
energies (Section 2.3.4) yields optimized electrostatic (F(2), F(4),
F(6)) and spin–orbit (z) parameters as well as the coefficients ci of
the intermediate coupling wavefunctions [Eq. (20)] (Section
2.3.3). The reduced matrix element of a tensor operator X

between two intermediate coupling wavefunctions 94fNSLJS
0

and
94fNS

0

L
0

J
0

S
0

is then given by

/lNSLJJXJlNS0L0J0S0 ¼
X

i

X
j

cicj/lNSLJJXJlNS0L0J0S ð25Þ

where the double sum runs over the i and j components of the
two intermediate coupling wavefunctions [Eq.(20)], and the
reduced matrix element /lNSLJJXJlNS0L0J0S is any of Eqs. (5)–(8).
Extensive table works of intermediate coupling reduced matrix
elements have been published by W.T. Carnall, H. Crosswhite, and
H.M. Crosswhite in 1978 for the RE3þ ions from Pr3þ to Er3þ

doped into LaF3 [72]. These tables have found widespread use
over the past three decades, and these reduced matrix elements
have been used for many RE3þ-doped materials besides the
LaF3:RE3þ for which they were originally derived. This was due
to the rather significant amount of calculations involved in the
evaluation of these reduced matrix elements as well as the
assumption that the reduced matrix elements would depend
little on the nature of the host material. The latter can be a poor
approximation if quantitative answers are sought from an energy-
level or transition-intensity calculation. With present day com-
puting power this simplification is not necessary, and intermedi-
ate coupling matrix elements can be readily calculated for
any material following the formalism outlined in the preceding
sections.
3. Transitions between 4f electronic states: the Judd–Ofelt
theory

3.1. The original Judd–Ofelt theory

3.1.1. Intensities of transitions between 4f electronic states

The probability for a transition from C1 to C2 to take place is
proportional to the transition moment

M
!

12 ¼

Z
C2 m
!C1dt ð26Þ

where m! denotes the dipole moment operator. The integral in Eq.
(26) is non-zero only if the direct product of C2 � m!�C1 is
symmetric (gerade) with respect to the center of symmetry (also
known as Laporte selection rule). The exchange of energy
between an electromagnetic field and the electrons of an atom
is generally dominated by electric-dipole (ED) interactions, and
the electric-dipole operator has ungerade (u) inversion symmetry.
Likewise, the 4f wavefunctions have ungerade (u) inversion
symmetry. Hence, for an ED-induced 4f24f transition, the direct
product is u�u�u¼u, and the transition has zero probability
because the integral in Eq. (26) vanishes.

In order for ED-induced 4f24f transitions to occur at all, some
admixture of states with opposite, i.e. gerade, parity into the 4f
wavefunctions is required. In a solid, such admixtures can be
mediated by odd-parity crystal-field components (giving rise to
electronic transitions) as well as odd-parity vibrations (giving rise
to vibronic transitions) [32]. This is the fundamental premise of the
Judd–Ofelt theory. The formalism begins by admixing even-parity
states jnl into the pure 4f wavefunction 9fNJMJS (Section 2) via an
odd-parity crystal field in order to obtain a new wavefunction 9BS,

9BS¼ 9fNJMJSþ
P
jnl

fNJMJ

���VD ���jnl

�� 	D ���jnli

E fNJMJ

� 	
�E jnl

� � ð27Þ

where E(fNJMJ)�E(jnl) are the energy differences between the 4f
state and the several perturbing even-parity states jnl, and V is the
crystal-field interaction operator. The 4fN�15d states are the even-
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parity states that are most strongly admixed into the 4f states
because they are closest in energy to the 4f states. The separation
between the barycenter energies of the 4f and 4fN�15d states
ranges from �50,000 cm�1 for Ce3þ to �100,000 cm�1 for Yb3þ ,
while other even-parity states such as 4fN�16s and 4fN�16d are at
much higher energies [65]. For the divalent rare-earth ions (RE2þ),
the 4fN–4fN�15d separation is much smaller than for RE3þ ions
[32], and the respective 4fN-4fN�15d transitions can extend into
the visible spectral region. These transitions are parity allowed and
thus orders of magnitude stronger than 4fN-4fN transitions; as a
result, they tend to mask the weak 4fN-4fN transitions. Further-
more, the much smaller 4fN

�4fN�15d energy separation largely
invalidates the use of the perturbation approach in Eq. (27). For
these reasons, the Judd–Ofelt theory is ill suited to describe 4fN-

4fN transition intensities in RE2þ ions.
For a transition between two 4f states B-B

0

and using the
admixed wavefunctions of Eq. (27), the matrix element of the
electric dipole moment is given by [1],

/B9DðkÞq 9B0S¼
X
jnl

/fNJMJ9V9jnlS/fNJ0M0J9D
ðkÞ
q 9jnlS

E fNJMJ

� 	
�E jnl

� �
8<
:

þ
/fNJ0M0J9V9jnlS/fNJMJ9D

ðkÞ
q 9jnlS

E fNJ0M0J

� 	
�E jnl

� �
9=
; ð28Þ

Two assumptions are now made in order to solve Eq. (28). First it
is assumed that all sublevels of a given even-parity state jnl are
degenerate. This is a rather drastic assumption when compared to
typical 4fN

�4fN�15d separations, because actual crystal-field split-
tings of the 4fN�15d states for example are on the order of 5000–

30,000 cm�1 [149]. Second, it is assumed that E fNJMJ

� 	
�E jnl

� �
¼

E fNJ0M0J

� 	
�E jnl

� �
. Likewise, this is a rough assumption because the

4fN
�4fN�15d separation is within a factor of 2�10 of typical 4f24f

transition energies [41,104]. With these assumptions, however, it is
possible to combine the two sums in Eq. (28) and to simplify the
matrix element of the electric-dipole moment to a sum of only three
terms. Expressed as oscillator strength, the intensity of the ED-

induced absorption 9lNSLJS-9lNS0L0J0S then becomes [1,11,150]

f abs
ED ¼

8p2me

3h

n
2Jþ1ð Þ

wabs
ED

n

X
l ¼ 2,4,6

OðlÞ9/lNSLJ99UðlÞ99lNS0L0J0S92
ð29Þ

where O(l) are the three Judd–Ofelt intensity parameters, the reduced
matrix element is given by Eq. (5), n is the mean transition frequency,

n is the refractive index at the transition frequency, wabs
ED is the local-

field correction, and the summation is over the even-rank reduced

matrix elements l¼2, 4, 6 of the U(l) tensor operator [151]. The fact
that the transition strength can be expanded as the sum of three
even-ranked tensors is one of the key results of the work of Judd and
Ofelt [151]. The oscillator strength for a magnetic-dipole (MD)

induced absorption 9lNSLJS-9lNSLJ0S only depends on one reduced

matrix element /lNSLJ99LþgS99lNSLJ0S. Unlike ED-transitions, it has

no intensity scaling parameter and is given by [152]

f abs
MD ¼

hn
6mec2

n

2Jþ1ð Þ
/lNSLJ:LþgS:lNSLJ0S
��� ���2 ð30Þ

where the reduced matrix element is calculated from Eqs. (7) and (8).
There is no need for a local-field correction for magnetic fields in non-
magnetic materials, i.e. Hloc=H¼ 1 [153]. Some transitions have both
ED and MD contributions, and the total oscillator strength is then

given by f abs
¼ f abs

ED þ f abs
MD.

The factor w in Eq.(29) takes into account that the local electric
field, Eloc, at the site of the ion undergoing an optical transition is
generally different from the macroscopic field in the medium, E.
Several models for this ‘‘local-field correction’’ have been pro-
posed in the past [154]. The virtual-cavity model (also called
Lorentz model) is a reasonable approximation for RE3þ ions
doped into a solid such as a crystal or glass, while other models
have been proposed for nano-particles embedded in a medium
[154]. The local-field correction for an ED-induced absorption is

given by wabs
ED ¼ ½Eloc=E�2 ¼ ½ n2þ2

� �
=3�2 in the virtual-cavity model,

which also shows that the oscillator strength is proportional to the
square of the electric field. The additional factor of 1=n in Eq. (29)

is often combined with wabs
ED even though it has a different physical

origin. Specifically, the photon flux in vacuum is F0 ¼ c2=4p
� �

E2
0

while in a dielectric medium it is Fm ¼ v=4p
� �

n2E2
0 ¼ n c=4p

� �
E2

0

with v¼ c=n. Since the photon flux does not change upon entering
the dielectric medium from the vacuum, an additional factor of
1=n has to be included in the expression of the ED oscillator
strength in Eq. (29) so that F0¼Fm [16]. Note that the virtual
cavity model is strictly only valid for cubic symmetry and for equal
polarizability of the RE3þ ion and the medium [155,156]. Devia-
tions from this ideal case would require more complex descrip-
tions of the local electric field [156]. In some systems, the empty-

cavity model with wabs
ED ¼ ½Eloc=E�2 ¼ ½3n2= 2n2þ1

� �
�2 was found to

provide a better description [157,158]. Most studies however
implicitly use the virtual-cavity model and the associated local-
field correction shown above.

Another complication is the refractive index dispersion of the
material. It is often ignored, and a fixed refractive index, e.g. the
index nD at the sodium D-line (589.3 nm), is used independent of
the wavelength of the transition. This can be problematic for
transitions near the band gap energy of the material where the
refractive index can easily be up to 30% greater than nD. It is
desirable to include dispersion for example by describing the
refractive index with the Sellmeier equation [159]

nðlÞ2 ¼ 1þ
X3

i ¼ 1

Bil
2

l2
�Ci

ð31Þ

where Bi and Ci are phenomenological material constants that are
typically obtained from a fit of Eq.(31) to a number of refractive
index measurements at different wavelengths. The situation is
further complicated in anisotropic crystals that have more than
one characteristic refractive index. In uniaxial crystals, taking the
average of the ordinary and extraordinary refractive index is a
good approximation as long as the birefringence is not too large
[16]. Finally note that the above ED and MD-induced absorption
oscillator strengths have to be multiplied by n2 for the case of
emission [16].

3.1.2. Application to experimental data

We are now in a position to calculate reduced matrix elements
with a given set of electrostatic (F(2), F(4), F(6)) and spin–orbit (z)
parameters (see Section 2) and use them to calculate ED and MD
oscillator strengths with a given set of three O(l) (l¼2, 4, 6) Judd–
Ofelt intensity parameters in Eqs. (29 and 30). The calculated total
oscillator strengths can then be compared to experimental oscil-
lator strengths as part of the procedure for fitting the O(l)

parameters. Experimental oscillator strengths are typically deter-
mined from absorption spectra and are calculated according to
[16,160]

f exp ¼
4e0mec2

e2

10 lnð10Þ

NA

Z
e nð Þdn

¼ 4:319� 10�9 molUcm2

l

Z
e nð Þdn ð32Þ

where the vacuum permittivity (e0), the electron mass (me), the
speed of light (c), the elementary charge (e), and Avocadro’s
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number (NA) are given in SI units, the molar extinction coefficient
e nð Þ is given in units of l= mol cmð Þ, and the energy n is given in
units of 1=cm. That is, the integral in Eq. (32) is determined by
integrating over the respective band in an absorption spectrum
plotted as e nð Þ [l= mol cmð Þ] as a function of n [1=cm]. Belaboring
the exact units here has some merit because there are different
formulae in the literature. The confusion is usually rooted in the
definition of the elementary charge, which some authors take as
the SI unit 1:60218� 10�19 C (as is done here) and others as
e2=

ffiffiffiffiffiffiffiffiffiffiffi
4pe0

p
¼ 4:8032� 10�10 in esu units. Furthermore note that

for crystals with symmetries lower than cubic it is necessary to
measure polarized absorption spectra and take the appropriate
sum to obtain the ‘‘unpolarized’’ e nð Þ for use in Eq. (32). For
example, tetragonal, hexagonal, and trigonal crystal systems are
typically uniaxial, i.e. having an extraordinary axis c

!
that is

different from the other axes a
!

. In this case, the ‘‘unpolarized’’
e nð Þ is obtained by separately measuring the s-polarized

E
!
? c
!

� 	
and p-polarized E

!
J c
!

� 	
absorption spectra and add-

ing them according to e nð Þ ¼ 2es nð Þþep nð Þ [102]. Unless the
material is amorphous or of cubic symmetry, it is therefore
critically important to measure all applicable polarizations sepa-
rately and to properly add them to obtain the ‘‘unpolarized’’
absorption spectrum. Not doing so can introduce substantial
errors in the oscillator strengths.

As with fitting the barycenter energies (see Section 2.3.4), a
choice must be made here as to which quantity to minimize when
fitting the three O(l) Judd–Ofelt intensity parameters to experi-
mental oscillator strengths. In analogy, one can either minimize
the absolute root-mean-square (RMS) deviation

RMSabs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�p

Xn

i ¼ 1

f exp
i �f calc

i

� 	2

vuut ð33Þ

or the relative RMS deviation

RMSrel ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�p

Xn

i ¼ 1

f exp
i �f calc

i

f exp
i

 !2
vuut

ð34Þ

between the calculated and experimental oscillator strengths,
where n is the number of experimental oscillator strengths and
p is the number of fit parameters (p¼3 in this case). Judd has
pointed out that weak transitions contain as much information
about the wavefunctions as the strong ones [3], and that this is
only properly accounted for by minimizing RMSrel in the fitting
procedure. Goldner et al. have used both absolute and relative
RMS in the analysis of the spectra of a Pr3þ-doped fluorozirconate
glass, and they have found that only the RMSrel gave stable and
physically meaningful values of the O(l) parameters [101] [161].
In particular, they were able to successfully predict the oscillator
strength of the 3H4-

3P2 transition, which is notoriously difficult
to model when fitting with RMSabs.

3.2. Modified Judd–Ofelt theories

The original Judd–Ofelt theory presented in Section 3.1 has
been found to provide quantitatively good predictions of the
transition strengths of many rare-earth ions in a wide variety of
host materials. One prominent exception is Pr3þ , for which large
deviations of the calculated oscillator strengths compared to the
experimental ones were found [162] [163]. Furthermore, the fit of
the Judd–Ofelt intensity parameters for Pr3þ has sometimes

yielded a negative O(2) parameter [164] [165] [166], which is
clearly unphysical as it may imply a negative excited-state life-

time. More specifically, the values of the fitted O(l) parameters
were sensitive to the Pr3þ transitions that were included in the
fit, and the calculation could go particularly awry when the high-
energy 3H4-
3P2 transition (�22700 cm�1 [72]) was included

[160,167]. For Pr3þ , the energy of the perturbing 4f5d configura-
tion (�60000 cm�1 [41]) is particularly close to the energy of the
4f states. The assumption of the original Judd–Ofelt theory (see
Section 3.1) that the energy difference between the perturbing
4fN�15d states and the 4fN states is constant may therefore not be
adequate. Specifically, it may range from �60000 cm�1 for

4f2 3H4

� 	
�4f5d to �37300 cm�1 for 4f2 3P2

� 	
�4f5d. Similar

failures of the original Judd–Ofelt theory have been observed for
Sm3þ [168] and Tb3þ [169,170]. Several modifications to the
original Judd–Ofelt theory have been proposed with a particular
focus on Pr3þ .

Auzel et al. have shown that the interconfigurational energy
difference can be accounted for explicitly if the perturbing
configurations are restricted to only 4fN�15d, a valid approach
given that other even-parity configurations are significantly
higher in energy [171]. They expanded Eq. (29) to include
4fN
�4fN�15d energy differences explicitly:

f abs
ED ¼

8p2me

3h

n
2Jþ1ð Þ

wabs
ED

n

X
l ¼ 1,2,3,4,5,6

1

EðJÞ�Eð4f 5dÞ

�

þ
�1ð Þ

l

E J0
� �
�Eð4f 5dÞ

#2

�
½Eð4f Þ�Eð4f 5dÞ�2

4
OðlÞ9/lNSLJ:UðlÞ:lNS0L0J0S92

ð35Þ

by also introducing odd-ranked U(l) tensors. Goldner et al. have found
this approach to provide a �30% improvement in the RMSrel but only
when considering the even-ranked tensors l¼2, 4, 6; the additional
inclusion of the odd-ranked tensors l¼1, 3, 5 yielded unphysical
results [101]. This may have been in part due to the only six
experimental oscillator strengths available to fit the now six O(l)

(l¼1, 2, 3, 4, 5, 6) intensity parameters. A re-examination of this
model for an early series RE3þ ion with more experimentally
accessible transitions (e.g. Nd3þ) may be warranted. A similar
approach has been taken by Kornienko et al. [172] [173], who have
used third-order perturbation theory to derive the expression

f abs
ED ¼

8p2me

3h

n
2Jþ1ð Þ

wabs
ED

n

X
l ¼ 2,4,6

OðlÞ /lNSLJ:UðlÞ:lNS0L0J0S
��� ���2

�f1þ2a½EðJÞþE J0
� �
�2Eð4f Þ�g ð36Þ

where the parameter a¼1/{2[E(4f5d)�E(4f)]}. For Pr3þ ,
aE10�5 cm, but it is usually treated as an additional fit para-
meter. It can be shown that Eq. (36) follows as a first-order
development from Eq. (35) by considering the even terms only
[101]. Using Eq. (36) for the analysis of Pr3þ-doped fluorozirconate
glasses yielded a fitted value of aE2.5�10�5 cm, which would
imply an energy of the 4f5d configuration of �30000 cm�1 [101],
which is clearly too low [41]. In turn fixing a to the more realistic
value of 10�5 cm provided similar results to using the even-ranked
terms in Eq. (35). More recently, a further improvement was achieved
for Pr3þ-doped double molybdates by inclusion of covalent interac-
tions of some Pr3þ multiplets with the ligands [174].

Finally, a somewhat more phenomenological approach has
been described by Florez et al., who proposed a combination of
even and odd-ranked tensors according to [170]

f abs
ED ¼

n
2Jþ1ð Þ

X
l ¼ 2,4,6

tðlÞ /lNSLJ:UðlÞ:lNS0L0J0S
��� ���2

(

þx2
X

l ¼ 1,3,5

tðlÞ9/lNc0J0:UðlÞ:lNcJS92

)
ð37Þ

where tðlÞ ¼ 8p2mcwabs
ED =3nh

� �
OðlÞ, n is the transition energy in

cm�1, and x¼ n=DE, where DE is the energy difference between
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the 4fN and the 4fN�15d configurations. Apart from the second
sum in the bracket, Eq. (37) is equivalent to Eq. (29). Using Eq.
(37) for the analysis of the spectra of Tb3þ-doped fluoroindate
glasses, they found that only the combination {t(2), t(3), t(6)}
resulted in all non-zero parameter values.

Overall, these modified Judd–Ofelt theories attempt to refine
some of the drastic assumptions made by the original Judd–Ofelt
theory. Some improvement is clearly achieved for the well-known
problem cases, however usually at the expense of additional fit
parameters and some loss of physical insight. In general, the
original Judd–Ofelt theory provides useful results, and the mod-
ified theories merit consideration only if the original theory is
found to fail.

3.3. Derived quantities

Several important quantities can be calculated once the Judd–
Ofelt O(l) intensity parameters are known for a specific material
system. For example, the rate of spontaneous radiative decay
AED

SLJ-S0L0J0 for an electric-dipole transition lNSLJ
��� E

- lNS0L0J0
��� E

is
given by

AED
SLJ-S0L0J0 ¼

8phn3

c3
BED

SLJ-S0L0J0 ð38Þ

Here, the Einstein coefficient is:

BED
SLJ-S0L0J0 ¼

e2

4hmee0n
f ED

ð39Þ

where the oscillator strength fED is given by Eq. (29) in the context
of the Judd–Ofelt theory. Combining Eqs. (29), (38), and (39)
yields:

AED
SLJ-S0L0J0 ¼

16p3e2

3e0hc3

n3

2Jþ1ð Þ
wemi

ED

X
l ¼ 2,4,6

OðlÞ9/lNSLJ:UðlÞ:lNS0L0J0S92

ð40Þ

where the fundamental constants are given in SI units, the
transition frequency n is given in (Hz), and the O(l) intensity
parameters are in units of (m2). As mentioned earlier, care should
be taken with the definition of the elementary charge, and it is
given as 1.60218�10�19 C in SI units here. Further note that the
local-field correction in emission differs by a factor of n2 form that
in absorption, i.e. wemi

ED ¼ n2wabs
ED (see Section 3.1.1) [16]. In analogy,

for a magnetic-dipole transition one uses fMD from Eq. (39) to
obtain:

AMD
SLJ-S0L0J0 ¼

phe2

3e0c5m2
e

n3

2Jþ1ð Þ
n39/lNSLJ99LþgS99lNSLJ0S92

ð41Þ

The total spontaneous radiative decay rate for a transition
9lNSLJS-9lNS

0

L
0

J
0

S is then given by ASLJ-S0L0J0 ¼ AED
SLJ-S0L0J0 þAMD

SLJ-S0L0J0 .
In most cases, an excited state lNSLJ

��� E
can decay to several lower-

energy final states 9lNS
0

L
0

J
0

S, and the total radiative decay rate of
9lNSLJS is simply the sum of the respective radiative rates. The
resulting radiative lifetime of the 9lNSLJS excited state is thus
given by

trad
SLJ ¼

1P
S0L0J0

AED
SLJ-S0L0J0 þAMD

SLJ-S0L0J0

� 	 ð42Þ

It is important to note that Eq. (42) only captures radiative

contributions to the decay of 9lNSLJS. There can be additional non-

radiative decay mechanisms such as multi-phonon relaxation and
a variety of energy-transfer processes like cross-relaxation,
upconversion, and energy migration. The combined rate of these
non-radiative decay processes adds to the radiative decay and
gives an overall shorter actual lifetime than the purely radiative
lifetime calculated from Eq. (42).
Another important characteristic of a decaying 9lNSLJS excited
state is the so-called branching ratio. It is the relative contribution
of one 9lNSLJS-9lNS0L0J0S transition to the total radiative decay
rate of the 9lNSLJS excited state, i.e.

bSLJ-S0L0J0 ¼
AED

SLJ-S0L0J0 þAMD
SLJ-S0L0J0P

S0L0J0
AED

SLJ-S0L0J0 þAMD
SLJ-S0L0J0

� 	 ð43Þ

The branching ratio is directly accessible in an experiment via
the relative intensities of the various emissions from a lNSLJ

��� E
excited state in a photoluminescence spectrum. A transition with
b40.5 is a potential candidate for laser action for a given
transition [175] [176].
3.4. Chemical trends

The 4f transitions gain their intensity via admixture of odd-
parity crystal-field components (see Section 3.1.1), i.e. their
intensity and thus the Judd–Ofelt O(l) intensity parameters
should depend on the type and symmetry of the ligands in a
given material. Görller–Walrand and Binnemans have provided
the so far most complete compilation of Judd–Ofelt O(l) intensity
parameters for a wide range of rare-earth doped materials [16].
Attempts have been made in the past to correlate the magnitude
of the O(l) intensity parameters with the local coordination type
and/or geometry of the RE3þ ion. Clear correlations are difficult to
establish because the coordinating environment has only a small
influence on the well-shielded 4f electrons [16], and the inten-
sities of specific 4f-4f transitions generally varies by a factor of
two at most. Possibly even more important, the comparison of
O(l) intensity parameters from different studies is limited by
potentially different computational approaches, such as fitting the
O(l) intensity parameters using optimized wavefunctions for the
given material vs. using wavefunctions from another material, the
types of transitions included in the fit, and the type of RMS error
minimized in the fitting procedure.

Nevertheless, some general tendencies have been established
(see Ref. [16] for a detailed discussion). The O(2) parameter was
found to scale with the degree of covalency in the chemical bonds
between the RE3þ ion and the coordinating ligands [177] in a
number of systems. This trend appears to be particularly pro-
nounced for the oscillator strength of hypersensitive transitions
(transitions having 9DS9¼0, 9DL9r2, and 9DJ9r2 [16]), which
have a large magnitude of the /lNSLJ99Uð2Þ99lNS0L0J0S reduced
matrix element and thus the O(2) parameter that is associated
with it [1]. A variety of models have been suggested over the
years regarding the physical origin of this correlation. Trends in
O(l) intensity parameters have been studied extensively for RE3þ

doped glasses, for which a large compositional space is accessible.
The O(6) parameter was found to decrease with increasing rigidity
of the matrix, which scales inversely with the vibrational ampli-
tude relative to the RE3þ-ligand bond length. The rigidity
decreases along the series of mixed crystalline oxides, glasses,
viscous solutions, hydrated ions, halide vapors, and complexes
with organic ligands [178]. A similar trend was found for O(4)

[179]. Other authors have correlated O(4) and O(6) with the
overlap of the 4f and 5d orbitals [180], the 6s electron density
[181], the ion size of the glass modifier [182], the ligand-field
distortion [183], the basicity at the RE3þ site [184], the degree of
covalency in the RE3þ-ligand bond [185] [186], and the ionic
packing ratio of the glass host [186]. This variety of explanations
illustrates the difficulty in identifying consistent trends across
many material systems. More importantly, it clearly highlights
the rather phenomenological nature of the Judd–Ofelt theory,
which is rooted in its various rather drastic assumptions (see
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Section 3.1.1). In most cases, therefore, it is difficult to go much
beyond treating the O(l) as phenomenological parameters. It
would be valuable to reexamine where possible or remeasure
where needed the existing body of spectral information using a
consistent experimental and computational formalism that
includes proper measurement of polarization-weighted oscillator
strengths at room temperature, 4f wavefunctions optimized for
each material and the associated reduced matrix elements, dis-
persion and local-field corrections, and the use of relative RMS
errors for the least-squares fitting of atomic and Judd–Ofelt O(l)

intensity parameters. While this is a daunting undertaking, it
would remove methodological differences that exist among past
studies and may yield a much clearer picture of chemical and
structural trends in the O(l) intensity parameters.
4. A case study: LaCl3:Er3þ

It is instructive to discuss the formalisms presented in Sections
2 and 3 in the context of a specific example. We have chosen
Er3þ-doped LaCl3 because energy-level and intensity measure-
ments as well as calculations with various degrees of sophistica-
tion exist for this system. This makes it possible to compare the
merits and pitfalls of each model. LaCl3 crystallizes in the hexa-
gonal space group P63=m with the La3þ site having C3h point
symmetry. Er3þ can be doped into LaCl3 up to �2 mol% without
changing the LaCl3 structural parameters. The crystal growth and
experimental procedures have been described in detail in Ref. [133].

Let us first look at the barycenter energies. In the present
work, we have measured s and p polarized absorption spectra of
a LaCl3:1%Er3þ single crystal at 300 K, and we now compare these
results with an earlier complete crystal-field analysis of this
crystal [133]. The barycenter energy results are summarized in
Table 3. First, the ‘‘unpolarized’’ absorption spectrum and indivi-
dual barycenter energies were obtained from the measured s and
p polarized absorption spectra according to Section 2.3.4. We
then performed a first calculation (Case #1 in Table 3) that took
the electrostatic (F(2), F(4), F(6)) and spin–orbit (z) interaction
parameters derived for LaF3:Er3þ by Carnall et al. [72] and used
them to calculate the barycenter energies. The average absolute
Table 3

Case study of calculated (Ecalc
B ) versus experimental (Eexp

B ) barycenter energies in LaCl3:1%

F(4)¼63.995 cm�1,F(6)¼6.6679 cm�1, z¼2370.0 cm�1 [72]) to calculate barycenter ene

the formalism described in Section 2. Case #2 (present work) used the same formalism

energies of LaCl3:1%Er3þ determined from polarized room-temperature absorption spe

F(4)¼66.887 cm�1, F(6)¼7.2952 cm�1, z¼2385.9 cm�1). Case #3 is an earlier detailed an

73 experimental crystal-field energies [133]. Note that the experimental barycenter en

considerably from Case #1 to Case #2 to Case #3.

2Sþ1LJ Case #1 Case #2

LaF3:Er3þ parameters [72] This work (300

Eexp
B Ecalc

B
Dcalc�exp Eexp

B

4I15/2 0 0 0
4I13/2 6520 6491 �29 6520
4I11/2 10165 10001 �164 10165
4I9/2 12375 12103 �272 12375
4F9/2 15172 15296 124 15172
4S3/2 18383 18495 112 18383
2H(2)11/2 19068 19018 �50 19068
4F7/2 20414 20586 172 20414
4F5/2 22099 22193 94 22099
4F3/2 22510 22501 �9 22510
2G(1)9/2 24467 24169 �298 24467
4G11/2 26290 26540 250 26290

Dcalc�exp
67179
deviation of this calculation is 67179 cm�1. A second calculation
(Case #2 in Table 3) was then performed that fitted the electro-
static (F(2), F(4), F(6)) and spin–orbit (z) interaction parameters to
minimize the relative RMS deviation [Eq. (24)] between the
calculated and experimental barycenter energies. This calculation
used the respective parameter values of LaF3:Er3þ [72] as starting
values for the fit and achieved an average absolute deviation of
427101 cm�1. The fitting of the atomic parameters for this
specific case changed their value by a few percent and decreased
the standard deviation by 77%. The energy-level description with
the fitted atomic parameters is therefore better than assuming
LaF3:Er3þ atomic parameters and, consequently, the wavefunc-
tions should be of better quality. A third calculation (Case #3 in
Table 3) was taken from a full crystal-field analysis of
LaCl3:1%Er3þ [133]. In this work, the barycenter energies are
exact because all crystal-field levels are known. This earlier study
used a Hamiltonian with 15 atomic and 5 crystal-field parameters
to fit 73 experimental crystal-field energies, and it achieved an
average absolute deviation of 6.076.8 cm�1, i.e. about one order
of magnitude improvement over Case #2. Table 4 compares the
barycenter energies obtained from the 300 K polarized absorption
spectra using the

R EB

0 eðEÞdE¼ 0:5 method (see Section 2.3.4) with
the exact barycenter energies from Ref. [133]. The 300 K bary-
center energies are found to be overestimated by an average of
39733 cm�1. One factor contributing to this difference is the
unequal thermal population of the crystal-field levels of the 4I15/2

ground state multiplet at 300 K (see Section 2.3.4), which are at 0,
36, 63, 95, 112, 140, 179, and 228 cm�1 [133]. The thermally
weighted average energy of the 4I15/2 multiplet is 84.1 cm�1 at
300 K and 106.6 cm�1 for infinite temperature (equal thermal
population), a difference of 22.5 cm�1 that contributes to the
above overestimate. Another source of deviation arises from the
fact that not all individual crystal-field transitions from the 4I15/2

multiplet to the various excited-state multiplets have the same
oscillator strength. This can cause additional barycenter energy
shifts in either direction.

Let us now look at the oscillator strengths (see Table 5). The
experimental oscillator strengths were determined from s and p
polarized room-temperature absorption spectra according to
favg¼2fsþ fp [102]. We then calculated intermediate coupling
Er3þ . Case #1 took F(k) and z parameters derived for LaF3:Er3þ (F(2)¼436.46 cm�1,

rgies for LaCl3:1%Er3þ in the intermediate coupling approximation [Eq. (9)] using

but performed a least-squares fit of RMSrel [Eq. (24)] to experimental barycenter

ctra (see Section 2.3.4) to find optimum F(k) and z parameters (F(2)¼433.22 cm�1,

alysis of LaCl3:1%Er3þ that included 15 atomic and 5 crystal-field parameters to fit

ergies determined from Case #3 are exact. The quality of the calculation improves

Case #3

K) Full crystal-field analysis [133]

Ecalc
B

Dcalc�exp Eexp
B Ecalc

B
Dcalc�exp

0 0 0

6527 7 6482 6494 12

10145 �20 10112 10116 4

12296 �79 12351 12346 �5

15139 �33 15176 15194 18

18311 �72 18290 18295 5

19185 117 19035 19046 11

20304 �110 20407 20406 -1

21949 �150 22065 22068 3

22303 �207 22407 22411 4

24430 �37 24453 24466 13

26415 125 26257 26259 2

427101 6.076.8
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reduced matrix elements of the U(l) and LþgS tensors (see Section
2.4) using the optimized wavefunctions found above (Case #2 in
Table 3) and performed an oscillator-strength analysis using
the Judd–Ofelt theory (see Section 3). The calculation also
included the refractive index dispersion in the form of the
Sellmeier equation [Eq. (31)] and respective parameters derived
from Ref. [187]. The least-squares intensity fit minimized the
RMSrel [Eq. (34)] and yielded the optimized Judd–Ofelt
parameters Oð2Þ ¼ 5:449� 10�20 cm2, Oð4Þ ¼ 2:077� 10�20 cm2,
and Oð6Þ ¼ 6:873� 10�21 cm2. The resulting calculated oscillator
strengths compare well with experiment and have an average
relative deviation of 1.00470.129. The same Judd–Ofelt analysis
was performed, but this time the wavefunctions and respective
reduced matrix elements for LaF3:Er3þ were used (Case #1 in
Table 3). This calculation yields an average relative deviation of
0.99970.149. Comparing the two calculations we find that
there is a slight improvement of �10% in the standard devia-
tion by using optimized wavefunctions. Note that for this case,
the substantial improvement in the barycenter energy
Table 4
Comparison of experimental barycenter energies in LaCl3:1%Er3þ . The values in

the left column were determined from polarized room-temperature absorption

spectra using the
R EB

0 eðEÞdE¼ 0:5 method (see Section 2.3.4). The values in the

right column were determined from a complete crystal-field (CF) analysis of

LaCl3:1%Er3þ and are exact [133]. The first method overestimates the barycenter

energies by D300K�CF ¼ 39733 cm�1 on average.

2Sþ1LJ Eexp
B , 300 K Eexp

B , Full CF analysis D300K�CF

4I15/2 0 0
4I13/2 6520 6482 38
4I11/2 10165 10112 53
4I9/2 12375 12351 24
4F9/2 15172 15176 �4
4S3/2 18383 18290 93
2H(2)11/2 19068 19035 33
4F7/2 20414 20407 7
4F5/2 22099 22065 34
4F3/2 22510 22407 103
2G(1)9/2 24467 24453 14
4G11/2 26290 26257 33

D300K-CF
39733

Fig. 7. Calculated total line strengths (in squared Debye units [133]) of selected multi

shown are the respective total line strengths for the ideal case of equal thermal popula

lines).
description by using fitted atomic parameters is not as pro-
nounced in the oscillator strength description. In fact, the
LaF3:Er3þ wavefunctions provide a rather good description of
the oscillator strengths in LaCl3:Er3þ . It would be interesting to
see how the two approaches compare for other compounds,
particularly those that are chemically quite different from
LaF3:Er3þ .

The earlier complete crystal-field analysis of LaCl3:Er3þ [133]
also provided calculated ED and MD oscillator strengths for all
individual crystal-field transitions in both s and p polarization.
This data allows us to test the assumption that the oscillator
strength of a multiplet transition is sufficiently well approxi-
mated by a measurement at 300 K. Fig. 7 shows the calculated
line strengths for selected multiplet transitions in LaCl3:Er3þ .
They exhibit substantial temperature dependencies up to 200 K as
the various crystal-field levels of the 4I15/2 ground-state multiplet
are being thermally populated and lower-energy crystal-field
transitions begin to contribute to the total line strength. For this
example of LaCl3:Er3þ we find that the oscillator strengths of the
various multiplet transitions at 300 K deviate by �13% on
average from the ideal case of equal thermal population of the
crystal-field levels of the 4I15/2 ground state multiplet. This
constitutes a significant source of error that is inherent to the
Judd–Ofelt approach. We also note in Fig. 7 that the line strength
can either increase or decrease with temperature, depending on
the strength of the individual crystal-field transitions that con-
tribute to the respective multiplet transition. Therefore, the effect
of non-uniform thermal population of the crystal-field levels of
the initial state cannot readily be corrected for unless a complete
and laborious crystal-field calculation is carried out.

The radiative lifetimes and branching ratios are a good test of
the theory because they involve transitions in emission that were
not part of the fitting procedure for the O(l) intensity parameters.
Table 6 summarizes the calculated radiative relaxation rates and
respective radiative lifetimes for the first 8 excited states of Er3þ

in LaCl3. The calculation used the optimized wavefunctions
(Table 3, Case #2) and optimized Judd–Ofelt intensity parameters
(Oð2Þ ¼ 5:449� 10�20 cm2, Oð4Þ ¼ 2:077� 10�20 cm2, Oð6Þ ¼ 6:873
�10�21 cm2; Table 5). Where available, we also list experimental
lifetimes that were measured at 300 K by direct excitation of
plet transitions in LaCl3:Er3þ as a function of temperature (solid bold lines). Also

tion of each crystal-field level of the 4I15/2 ground-state multiplet (thin horizontal



Table 5
Oscillator strength analysis of LaCl3:1%Er3þ using the Judd–Ofelt theory (see Section 3) with calculated reduced matrix elements (see Section 2.4) based on the optimized

wavefunctions (Table 3, Case #2). The optimized Judd–Ofelt intensity parameters (Oð2Þ ¼ 5:449� 10�20 cm2, Oð4Þ ¼ 2:077� 10�20 cm2, Oð6Þ ¼ 6:873� 10�21 cm2) were

obtained from a least-squares fit of RMSrel [Eq. (34), final RMSrel¼0.2222] to experimental oscillator strengths determined from s and p polarized room-temperature

absorption spectra according to favg¼2fsþ fp [102]. The refractive index dispersion was assumed to follow the Sellmeier equation [Eq.(31)] with parameters B1¼0.62646,

C1 ¼ 6:1295� 104 nm2, B2¼1.5212, C2 ¼ 6:1087� 103 nm2, B3¼0.2465, and C3 ¼ 1:4086� 104 nm2derived from Ref. [187]. A calculation (oscillator strengths not shown)

using reduced matrix elements calculated from LaF3:Er3þ atomic parameters (Table 3, Case #1) but otherwise identical was also performed and yielded

Oð2Þ ¼ 5:575� 10�20 cm2, Oð4Þ ¼ 2:258� 10�20 cm2, Oð6Þ ¼ 6:430� 10�21 cm2 (final RMSrel¼0.2363). The ratios of calculated and experimental oscillator strengths are

shown for both calculations. The last column gives the calculated radiative lifetime of the excited states.

Transition
4I15/2-

Experimental Oscillator Strengths [10�6] Calculated Oscillator Strengths [10�6] tcalc
rad (ms)

f exp
p f exp

s f exp
avg f calc

ED

Optimized

f calc
MD

Optimized

f calc
total

Optimized

f calc
total=f exp

avg

Optimized

f calc
total=f exp

avg

LaF3:Er3þ

Optimized

4I13/2 0.5825 0.5780 1.738 1.039 0.5757 1.615 0.929 0.911 5577
4I11/2 0.1114 0.1948 0.5010 0.5527 0 0.5270 1.052 1.015 4954
4I9/2 0.2212 0.1323 0.4858 0.5733 0 0.5733 1.180 1.090 2735
4F9/2 1.289 0.8767 3.043 2.641 0 2.641 0.868 0.925 403
4S3/2 0.1199 0.1297 0.3794 0.3502 0 0.3502 0.923 0.821 597
2H(2)11/2 2.074 4.404 10.88 11.56 0 11.56 1.062 0.903 67
4F7/2 0.8680 0.7995 2.467 1.897 0 1.897 0.769 0.760 184
4F5/2 0.1070 0.1434 0.3939 0.4348 0 0.4348 1.104 1.031 272
4F3/2 0.07296 0.07003 0.2130 0.2505 0 0.2505 1.176 1.190 333
2G(1)9/2 0.1615 0.2180 0.5976 0.6142 0 0.6142 1.028 1.219 96
4G11/2 4.743 8.967 22.68 21.59 0 21.59 0.952 1.121 16

Average 1.00470.129 0.99970.149
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the respective excited state. Multiphonon relaxation generally
becomes negligible compared to radiative relaxation if more than
6 phonons are involved in the relaxation to the next lower
electronic state. The maximum optical phonon energy of LaCl3

is 263 cm�1 [188], and Table 6 shows multiphonon relaxation
rates calculated using the parameters for LaCl3 given in Ref. [189].
With the exception of 4F7/2 and 4F5/2 (the 2H(2)11/2 is a special
case discussed below), multiphonon relaxation is completely
suppressed for all states in Table 6, and radiative relaxation is
expected to be the dominant relaxation mechanism. The calcu-
lated lifetimes for 4I13/2, 4I11/2, and 4F9/2, while of the correct
magnitude, are longer by 10–40% than the measured lifetimes.
This may indicate a limitation of the calculation and/or the
presence of additional non-radiative processes. Both 4I13/2 and
4I11/2 can undergo energy-transfer upconversion processes with
an excited neighboring Er3þ ion, which would shorten the
respective lifetimes from their purely radiative values. The 4S3/2

excited state is an interesting case because it is located only
745 cm�1 below the 2H(2)11/2 state. The two states are in thermal
equilibrium which couples their radiative decays. At 300 K and by
properly taking the (2Jþ1) multiplet degeneracies into account,
the 2H(2)11/2 has a thermal population of p11=2 ¼ 0:0777. The
expected radiative relaxation rate of the coupled system is then
given by the weighted average p3=2A3=2þp11=2A11=2, which yields a
calculated lifetime of 377 ms that is within 15% of the measured
lifetime of 330 ms. The calculation overestimates the 4F5/2 lifetime
by �70%. The multiphon relaxation rate, kmp, of this state is
calculated to 5037 s�1 [189] and therefore competes with radia-
tive relaxation. The combined rate Atotal

rad þkmp ¼ 8726 s�1, which
corresponds to a lifetime of 115 ms that is within 40% of the
measured lifetime.

Finally, branching ratios offer another test of the Judd–Ofelt
theory. Unfortunately, Er3þ poses some experimental chal-
lenges for the measurement of branching ratios because the
first few excited states are at relatively high energy, and
radiative transitions to these final states are located in the
infrared region. We have measured a branching ratio of 3.06 for
the 4F7/2-

4I15/2, 4I13/2 transitions, which is quite close to the
value of 3.65 expected from the respective calculated radiative
rates in Table 6.
5. Conclusions

The Judd–Ofelt theory has become a centerpiece of rare-earth
optical spectroscopy over the past five decades. It has spurred
research into the theoretical foundations of the model and led to
numerous modifications over the years. In parallel, the theory has
been applied to a broad range of rare-earth-doped solids. Many of
the studied materials have important applications in solid-state
lasers, optical amplifiers, phosphors for displays and solid-state
lighting, upconversion and quantum-cutting materials, and fluor-
escent markers. The Judd–Ofelt theory has proven to be a valuable
tool to analyze transition intensities, identify specific transitions
of interest, and make estimates of quantum efficiencies. Our
attempt in this paper was to provide the experimentalist with a
comprehensive toolset that is suited for the calculation of the 4f
wavefunctions, the associated energies and reduced matrix ele-
ments, and the Judd–Ofelt intensity parameters.

We have reviewed the two main assumptions made by the
original Judd–Ofelt theory (Section 3.1.1), i.e. (1) all crystal-field
levels of the perturbing odd-parity states (primarily 4fN�15d) are
assumed to be degenerate, and (2) the energy difference between
a 4fN(SLJ) multiplet and the degenerate perturbing odd-parity
states is assumed to be the same for all 4fN(SLJ) multiplets. These
two approximations allowed the transition strength to be
expanded as the sum of three even-ranked tensors, which is the
key accomplishment of Judd and Ofelt. Various modified Judd–
Ofelt theories have partially addressed these assumptions over
the years and achieved up to 30% improvements in the accuracy
of calculated oscillator strengths (Section 3.2). Nevertheless, it
is important to be aware of a number of additional assump-
tions, limitations, and pitfalls that are typically encountered
when applying the Judd–Ofelt theory in practice. Any
study using a Judd–Ofelt analysis should explicitly discuss or
– at a minimum – state the following six assumptions and
conditions:
�
 The type of 4f wavefunctions that were used to calculate the
reduced matrix elements. Ideally, the 4f wavefunctions are
obtained by fitting an intermediate coupling Hamiltonian Eq.
(9) to a set of experimental barycenter energies (Section 2.3.4),



Table 6

Calculated ED (AED
rad) and MD (AMD

rad ) radiative decay rates, total radiative lifetime (trad), and branching ratios (b) in LaCl3:Er3þ . The calculation used the optimized

wavefunctions (Table 3, Case #2) and optimized Judd–Ofelt intensity parameters (Oð2Þ ¼ 5:449� 10�20 cm2, Oð4Þ ¼ 2:077� 10�20 cm2, Oð6Þ ¼ 6:873� 10�21 cm2; Table 5).

Where available, the measured lifetime (exp) obtained from direct excitation of the respective excited state is given. Also shown are multiponon relaxation rates, kmp,

calculated using the parameters given in Ref. [189].

Transition AED
rad (s�1) AMD

rad (s�1) Atotal
rad (s�1) kmp (s�1) trad (ms) b

4I13/2 -4I15/2 115.3 63.9 179.2 E0 5580

5000 (exp)

1.00

179.2

4I11/2 -4I15/2 163.0 0.0 163.0 E0 5035

4000 (exp)

0.82

-4I13/2 21.8 13.9 35.7 0.18

198.7

4I9/2 -4I15/2 319.4 0.0 319.4 1 2735 0.87

-4I13/2 43.8 0.0 43.8 0.12

-4I11/2 1.0 1.5 2.5 0.01

365.7

4F9/2 -4I15/2 2274.6 0.0 2274.6 E0 403.0

280 (exp)

0.92

-4I13/2 116.8 0.0 116.8 0.05

-4I11/2 68.8 10.5 79.3 0.03

-4I9/2 7.0 3.9 10.8 0.00

2481.5

4S3/2 -4I15/2 1129.3 0.0 1129.3 E0 593.8

330 (exp)

0.67

-4I13/2 438.3 0.0 438.3 0.26

-4I11/2 36.3 0.0 36.3 0.02

-4I9/2 79.4 0.0 79.4 0.05

-4F9/2 0.7 0.0 0.7 0.00

1684.0

2H(2)11/2 -4I15/2 13121.3 0.0 13121.3 70.8 0.93

-4I13/2 216.3 112.6 328.9 0.02

-4I11/2 135.3 309.6 444.9 0.03

-4I9/2 170.1 4.3 174.4 0.01

-4F9/2 45.2 0.3 45.5 0.00

-4S3/2 0.1 0.0 0.1 0.00

14115.1

4F7/2 -4I15/2 3805.7 0.0 3805.7 3.01�105 183.7 0.70

-4I13/2 1041.5 0.0 1041.5 0.19

-4I11/2 391.8 0.0 391.8 0.07

-4I9/2 163.0 15.6 178.6 0.03

-4F9/2 10.6 15.8 26.4 0.01

-4S3/2 0.1 0.0 0.1 0.00

-2H(2)11/2 0.7 0.0 0.7 0.00

5444.8

4F5/2 -4I15/2 1382.6 0.0 1382.6 5037 271.1

160 (exp)

0.38

-4I13/2 1714.9 0.0 1714.9 0.47

-4I11/2 249.7 0.0 249.7 0.07

-4I9/2 159.0 0.0 159.0 0.04

-4F9/2 173.2 0.0 173.2 0.05

-4S3/2 1.7 0.8 2.5 0.00

-2H(2)11/2 3.8 0.0 3.8 0.00

-4F7/2 1.8 1.3 3.1 0.00

3688.8
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followed by calculation of the reduced matrix elements using
the optimized atomic parameters (Section 2.4).

�
 The type of model used for describing the refractive index

dispersion. Depending on the compound, the refractive index
can easily be �30% higher in the near UV compared to the
near infrared spectral region (Section 3.1.1). This enters the
oscillator strength via the term wabs

ED =n [see Eq. (29)] and can
induce errors on the order of 50% in the calculated oscillator
strength unless an adequate dispersion description such as the
Sellmeier model [Eq. (31)] is used.

�
 The type of local-field correction that was used. A typical choice

is the virtual-cavity model (Section 3.1.1) which, however, is
strictly only valid for cubic symmetry and for equal polariz-
ability of the RE3þ ion and the medium.

�
 The temperature at which absorption spectra were measured.

The determination of barycenter energies and oscillator
strengths for a Judd–Ofelt analysis assumes equal population
of all crystal-field levels of the initial state of a transition
(Sections 2.3.4 and 4). While room temperature measurements
are usually the practical choice, we have shown that errors in
the oscillator strength on the order of 10–15% in either
direction are to be expected from a measurement at 300 K.

�
 The method used to account for polarization. The Judd–Ofelt

theory is formulated for unpolarized transitions, an assump-
tion that is usually well met for amorphous systems such as
glasses and liquids. In crystals with symmetry lower than
cubic, however, absorption spectra polarized along the various
crystal axes have to be measured individually and then
properly averaged. The polarization-weighted molar extinc-
tion coefficient is e nð Þ ¼ 2es nð Þþep nð Þ for uniaxial systems
(tetragonal, hexagonal and trigonal) (Section 3.1.2). More
complex formulations are needed for even lower symmetry
crystals.

�
 The type of root-mean-square (RMS) error that was used in the

least-squares optimization of both the 4f wavefunctions and
the Judd–Ofelt intensity parameters (Sections 2.3.4 and 3.1.2).
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Minimizing the relative RMS error (Eqs. (24 and 34), respec-
tively) makes best use of the available information and
typically provides better results than minimizing the absolute
RMS error (Eqs. (23 and 33), respectively).

This paper may serve as a useful starting point for research in
this area. We hope that the Judd–Ofelt theory continues to evolve
and to provide valuable insights in future rare-earth material
research.
6. Note

A public and free version of a software package based on the
formalism presented here will be available for download from Los
Alamos National Laboratory. Please contact the first author for
instructions.
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[39] S.R. Lüthi, H.U. Güdel, M.P. Hehlen, J.R. Quagliano, Phys. Rev. B 57 (1998)

15229.
[40] B.R. Judd, Proc. Phys. Soc. London Sect. A 69 (1956) 157.
[41] G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals,

Interscience Publishers, New York, 1968.
[42] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes

in C, Cambridge University Press, Cambridge, 1988.
[43] G. Lakshminarayana, E.M. Weis, D.J. Williams, M.P. Hehlen, in preparation.
[44] G.H. Dieke, S. Singh, J. Opt. Soc. Am. 46 (1956) 495.
[45] G.H. Dieke, L. Heroux, Phys. Rev. 103 (1956) 1227.
[46] G.H. Dieke, H.M. Crosswhite, J. Opt. Soc. Am. 46 (1956) 885.
[47] S.P. Cook, G.H. Dieke, J. Chem. Phys. 27 (1957) 1213.
[48] G.H. Dieke, L. Leopold, J. Opt. Soc. Am. 47 (1957) 944.
[49] E. Carlson, G.H. Dieke, J. Chem. Phys. 29 (1958) 229.
[50] G.H. Dieke, R. Sarup, J. Chem. Phys. 29 (1958) 741.
[51] F. Varsanyi, G.H. Dieke, J. Chem. Phys. 33 (1960) 1616.
[52] H. Crosswhite, G.H. Dieke, J. Chem. Phys. 35 (1961) 1535.
[53] G.H. Dieke, H.M. Crosswhite, B. Dunn, J. Opt. Soc. Am. 51 (1961) 820.
[54] M.S. Magno, G.H. Dieke, J. Chem. Phys. 37 (1962) 2354.
[55] F. Varsanyi, G.H. Dieke, J. Chem. Phys. 36 (1962) 2951.
[56] F. Varsanyi, G.H. Dieke, J. Chem. Phys. 36 (1962) 835.
[57] J.D. Axe, G.H. Dieke, J. Chem. Phys. 37 (1962) 2364.
[58] L.G. DeShazer, G.H. Dieke, J. Chem. Phys. 38 (1963) 2190.
[59] K.S. Thomas, S. Singh, G.H. Dieke, J. Chem. Phys. 38 (1963) 2180.
[60] G.H. Dieke, B. Pandey, J. Chem. Phys. 41 (1964) 1952.
[61] J.W. Rakestra, G.H. Dieke, J. Chem. Phys. 42 (1965) 873.
[62] H.M. Crosswhite, G.H. Dieke, W.J. Carter, J. Chem. Phys. 43 (1965) 2047.
[63] N.H. Kiess, G.H. Dieke, J. Chem. Phys. 45 (1966) 2729.
[64] A.H. Piksis, G.H. Dieke, H.M. Crosshite, J. Chem. Phys. 47 (1967) 5083.
[65] G.H. Dieke, H.M. Crosswhite, Appl. Optics 2 (1963) 675.
[66] W.T. Carnall, Anal. Chem. 34 (1962) 786.
[67] W.T. Carnall, R.L. McBeth, D.M. Gruen, J. Phys. Chem. 66 (1962) 2159.
[68] W.T. Carnall, J. Phys. Chem. 67 (1963) 1206.
[69] W.T. Carnall, P.R. Fields, G.E. Toogood, J. Phys. Chem. 68 (1964) 2351.
[70] W.T. Carnall, P.R. Fields, Adv. Chem. Ser. (1967) 86.
[71] W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. 49 (1968) 4443.
[72] W.T. Carnall, H. Crosswhite, H.M. Crosswhite, Energy level structure and

transition probabilities in the spectra of the trivalent lanthanides in LaF3,
Argonne National Laboratory Report no. ANL-78-XX-95, 1978.

[73] W.T. Carnall, P.R. Fields, K. Rajnak, J.Chem. Phys. 49 (1968) 4447.
[74] W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. 49 (1968) 4450.
[75] W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. 49 (1968) 4424.
[76] H.M. Crosswhite, R.L. Schwieso, W.T. Carnall, J. Chem. Phys. 50 (1969) 5032.
[77] W.T. Carnall, P.R. Fields, R. Sarup, J. Chem. Phys. 51 (1969) 2587.
[78] W.T. Carnall, P.R. Fields, J. Morrison, R. Sarup, J. Chem. Phys. 52 (1970) 4054.
[79] W.T. Carnall, P.R. Fields, R. Sarup, J. Chem. Phys. 54 (1971) 1476.
[80] W.T. Carnall, R. Sarup, P.R. Fields, J. Chem. Phys. 57 (1972) 43.
[81] W.T. Carnall, S. Siegel, J.R. Ferraro, B. Tani, E. Gebert, Inorg. Chem. 12 (1973)

560.
[82] W.T. Carnall, H. Crosswhite, H.M. Crosswhite, J.G. Conway, J. Chem. Phys.

64 (1976) 3582.
[83] K.H. Hellwege, Naturwissenschaften 34 (1947) 225.
[84] A.M. Hellwege, K.H. Hellwege, Z. Phys. 130 (1951) 549.
[85] A. Friederich, K.H. Hellwege, H. Lammermann, Z. Phys. 158 (1960) 251.
[86] K.H. Hellwege, G. Hess, H.G. Kahle, Z. Phys. 159 (1960) 333.
[87] A. Friederich, K.H. Hellwege, H. Lammermann, Z. Phys. 159 (1960) 524.
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