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Theory of one-phonon-assisted energy transfer between rare-earth ions in crystals
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A theoretical framework and the method of application are presented to describe nonresonant energy transfer
processes between rare-earth ions of thef N electronic configuration at centrosymmetric sites of crystals, in
which the energy mismatch is made up by the emission or absorption of one ‘‘nondiagonal’’ phonon. The
established theory of Holstein, Lyo, and Orbach~HLO! is applicable to, for example, an (EQ↔EQ,V) energy
transfer process which is composed of an allowed pure electric quadrupole-electric quadrupole~EQ-EQ!
nonradiative transition and a vibrational transition in which one ‘‘diagonal’’ phonon emission or absorption
occurs from a definite electronic state of the donor or acceptor. By contrast, the theory applies to an
(EQ↔EDV) process where an EQ transition occurs at one site and one nondiagonal phonon in an electric
dipole vibronic~EDV! transition is involved at the other site. We find that for the (EQ↔EDV) process the
coherent cancellations occurring in the conventional diagonal HLO theory of one-phonon-assisted processes,
which lead to the dominance of two-phonon energy transfer processes, do not occur in the nondiagonal
one-phonon-assisted case. First, the Debye phonon model used by HLO theory has been employed, in which
the crystal is assumed to consist of an isotropic, continuous medium. This model is only applicable to acoustic
phonons with small wave vectorq. The energy transfer rate obtained for the nondiagonal one-phonon-assisted
process increases quadratically with increasing intersite energy mismatch, when it is small compared with the
average thermal energykBT at temperatureT. Second, to take into account the crystal structure on the atomic
scale which usually has anisotropic properties and to consider optical phonons, etc., the phonon involved in the
diagonal and nondiagonal energy transfer process has been described by a running lattice wave, as an irreduc-
ible representation basis component of the space group and of the solution of lattice dynamical equations. The
transition element and transition rate thus obtained show that the significant difference between the coherence
effects of the diagonal and nondiagonal cases still occurs. Furthermore, some new points arise, especially the
contributions from flat parts of the dispersion curves of optical phonon branches, to the studied processes.
Therefore, contrary to the conclusion of HLO theory, optical phonons withq50 can make important contri-
butions to one-phonon-assisted energy transfer processes for the nondiagonal case. In addition, the approxi-
mations inherent in the widely used spectral overlap model are pinpointed, and the selection rules and coher-
ence effect of lattice waves are briefly discussed. Noticeably, although we focus upon centrosymmetric
systems, however, the nondiagonal processes and the related results obtained in this paper are also applicable
to noncentrosymmetric systems.
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I. INTRODUCTION

Rare-earth-ion~-doped! materials exhibit pseudoatomi
sharp-linef N- f N luminescence which is parity forbidden b
the electric dipole~ED! mechanism~to first order!. Transi-
tions are enabled by a~second-order! ED mechanism with
the odd-parity component of the crystal field Hamiltoni
Hcf and/or electron-phonon coupling HamiltonianHph ~with
an odd-parity phonon for centrosymmetric systems! as the
perturbation operator. Upconversion, quenching, and mig
tion phenomena show that energy transfer is of major imp
tance in the solid state. Resonant energy transfer has
treated by Dexter.1 A ~second-order! theory of phonon-
assisted energy transfer in which a parity-allowed~in the first
order! nonradiative electronic transition of the dono
acceptor system is followed or preceeded by a ‘‘diagon
phonon emission or absorption~from a definite electronic
state of the donor or acceptor!, making up the energy mis
match between the ions at two sites, was developed by H
0163-1829/2002/66~21!/214305~17!/$20.00 66 2143
a-
r-
en

’’

l-

stein, Lyo, and Orbach2 some decades ago. In the prese
work we focus on another important type of nonreson
energy transfer termed nondiagonal phonon-assisted en
transfer. For example, in the case of this nondiagonal elec
quadrupole-electric dipole vibronic (EQ↔EDV) energy
transfer process, one phonon is involved in an EDV tran
tion at one site to make up the energy mismatch, while a
introducing odd-parity electronic operators making a tran
tion between a 4f N state and a virtual 4f N215d state, etc. An
EQ transition occurs at the other site. In the notation e
ployed, the hyphen separates the donor and acceptor s
but the double-headed arrow serves to show that the pro
is composed of~EQ-EDV! and ~EDV-EQ!. To our knowl-
edge, the nondiagonal phonon-assisted energy transfer th
has not been well developed up to the present,3 even though
some experimental results remain unaccounted for.4,5 We an-
ticipated, however, that nondiagonal phonon-assisted en
transfer would manifest some properties rather different fr
those of the diagonal process.
©2002 The American Physical Society05-1
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In the Holstein-Lyo-Orbach~HLO! theory, a cancellation
occurs in thet-matrix element of one-phonon-assisted dia
onal energy transfer between the corresponding terms
ground and excited states and between the donor and ac
tor when the transition involves one low-momentum phon
and similar donor and acceptor ions, so that this proces
unimportant. However, in this paper, we point out that t
cancellation does not occur for nondiagonal processes,
the consequence that a faster energy transfer rate is exp
to result.

Just as in HLO theory, first in the derivation and the d
cussion of the theory, we assume that the participating p
non is approximately of the Debye type. However, this is
appropriate for describing optical phonons and acou
phonons with large wave vector, because of the implicit
sumption that the crystal is a continuous, isotropic mediu
For a more realistic treatment, second, the lattice w
model of vibrations, considering the crystal structure on
atomic scale and, therefore, the anisotropic properties,
been introduced and incorporated into the energy tran
theory. However, to take the localization of the rare-ea
ion-phonon coupling into account and for the convenience
step-by-step approximative calculations, we have a
adopted shell models of phonons to express the local
coupling Hamiltonian. Then the transition element and tr
sition rate of both the diagonal and nondiagonal one-phon
assisted energy transfer processes have been obtaine
discussed based on the lattice wave model and shell mod
phonons. The different coherence factors for the diago
and nondiagonal processes obtained within the Debye p
non model are found to be unchanged, and an optical pho
with zero wave vector can make an important contribution
the nondiagonal one-phonon-assisted energy transfer
cess, in contrast to the conclusion of the HLO theory. Fina
we discuss under what approximation our results can
semble those from the usual spectral overlap appro
~SOA!.

In Sec. II the transition elementst f i for the diagonal and
nondiagonal processes are derived following the H
theory. In Sec. III, the rare-earth ion-phonon coupling Ham
tonian Hph based on the Debye model is defined and
elementt f i of the nondiagonal process is rewritten in term
of the first-order approximative wave functions caused
Hph. Furthermore, more tractable methods of application
21430
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estimation of the transition element and its selection ru
ensuing from application of the Judd closure approximati
are described. In Sec. IV, the energy migration rateW for the
nondiagonal process is obtained based on the Debye m
of phonons, and the dependence upon energy mismatch
upon temperature for several limiting cases is discussed
Sec. V we review the shell model and the lattice wave mo
of phonons, and discuss their interrelationship. In Sec.
we give the expression of the electron-phonon coupl
Hamiltonian based on the models in Sec. V. This is follow
by the derivation of the elementst f i of both diagonal and
nondiagonal single-phonon-assisted energy transfer, the
plification of the latter, and the discussion of some select
rules about the phonon involved. Section VII provides t
expressions for the energy migration rates of these proce
based on Secs. V and VI. Discussions are then include
the summation over wave vector and different branches
the dispersion curves of phonons, and of the coherence
tor. In addition, a discussion of the relationship between
presentt-matrix approach and the SOA for the nondiagon
processes is made. Finally, the main conclusions of this st
are given in Sec. VIII.

For simplicity, we assume that the rare-earth ions are
cated at centrosymmetric sites in the following discussi
The effects of changes in the equilibrium positions of nuc
in normal vibrations, which accompany electronic tran
tions, are ignored since these are minor for the case stud6

II. „EQ^EQ,V… AND „EQ^EDV… t-MATRIX ELEMENTS

Figure 1 shows a typical energy transfer scheme from
excited donoru1* & to a ground-state acceptoru2&. As an ex-
ample, only the EQ type of parity-allowedf N- f N transition is
considered for the donor and acceptor transitions. We use
notation (EQ↔EQ,V) to represent this diagonal energ
transfer, in which an electric-quadrupole–electr
quadrupole nonradiative electronic transition of the don
acceptor system is followed or preceeded by a vibratio
transition which could occur either at the donor or at t
acceptor site. Therefore, both (EQ-EQ,V) and (V,EQ-EQ)
are included. Then, for this one-phonon-assisted ene
transfer process with the intersite energy mismatchDE12
5E22E157\vs,q , the expression for thet-matrix ele-
ment, from conventional HLO theory, is
t f i5 (
j 51,2

^1,2* ,ns,q61uFHQQu1* ,2,ns,q61&^1* ,2,ns,q61uHph~ j !

@E12~E16\vs,q!#
1

Hph~ j !u1,2* ,ns,q61&^1,2* ,ns,quHQQ

~E12E2! G u1* ,2,ns,q&

5
J^ns,q61u«uns,q&e

7 iq•R2

2DE12
$@ f ~1!2g~1!#e6 iq•R2@ f ~2!2g~2!#%. ~1!
where

J5^1,2* uHQQu1* ,2& ~2!

and
^ j ,ns,q61uHph~ j !u j ,ns,q&5^ns,q61u«uns,q&e
7 iq•Rj f ~ j !,

~3a!

for the ground electronic stateuj&,
5-2
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THEORY OF ONE-PHONON-ASSISTED ENERGY . . . PHYSICAL REVIEW B66, 214305 ~2002!
^ j * ,ns,q61uHph~ j !u j * ,ns,q&5^ns,q61u«uns,q&e
7 iq•Rjg~ j !,

~3b!

for the excited electronic stateu j * &,
s andq denote the polarization and wave vector of the ph
non involved, respectively, andR5R22R1 .

It is straightforward to observe that the cancellation ari
from the opposite sign in front of the term@g(1)e7 iq•R1

1 f (2)e7 iq•R2# and the term@ f (1)e7 iq•R11g(2)e7 iq•R2#.
The energy denominator of the former term7\vs,q , repre-
senting the phonon emission or absorption before ene
transfer, is exactly opposite to that in the latter,E12E2 ,
representing phonon emission or absorption after ene
transfer. It is evident from Eq.~1! that the opposite sign lead
to ~i! the cancellation betweenf ( j ) and g( j ), and ~ii ! if q
•R!1 and ion 1 is similar to ion 2, the cancellation betwe
the donor and acceptor will be fairly complete. This mak
the single-phonon-assisted energy transfer process unim
tant, so that higher-order processes need to be consider

However, if the electronic transition of the donor or a
ceptor is parity forbidden, as, for example, in thef N- f N ED
transition of a rare-earth ion, another kind of single-phon
assisted energy transfer process plays an important
which exhibits very different characteristics. In this proce
Q

o
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only an odd-parity phonon is involved in a nonradiative ED
transition at the donor or acceptor ion. Following the form
ism of the HLO theory, thet-matrix element of the
(EQ↔EDV) process is

FIG. 1. Scheme for diagonal phonon-assisted energy tran
from donor~1! to acceptor~2!. DE125E22E15\vsq is the inter-
site energy mismatch, being.0 for phonon absorption.
t f i5^1,2* ,ns,q61u H(
2x

FHQDu1* ,2x ,ns,q61&^1* ,2x ,ns,q61uHph~2!

2~E2x
6\vs,q!

1
Hph~2!u1,2x ,ns,q&^1,2x ,ns,quHQD

~E12E2x
! G

1(
1x

FHDQu1x,2,ns,q61&^1x,2,ns,q61uHph~1!

E12~E1x
6\vs,q!

1
Hph~1!u1x,2* ,ns,q&^1x,2* ,ns,quHDQ

~E12E1x
2E2! G J u1* ,2,ns,q&, ~4!

>H (
1x

F J1,1x
g1x,1* 1 f 1,1x

J1x,1*

2E1x

Ge7 iq•R11(
2x

F J2* ,2x
f 2x,21g2* ,2x

J2x,2

2E2x

Ge7 iq•R2J ^ns,q61u«uns,q&, ~5!

5^ns,q61u«uns,q&e
7 iq•R2F(

1x

J1,1x
g1x,1* 1 f 1,1x

J1x,1*

2E1x

e6 iq•R1(
2x

J2* ,2x
f 2x,21g2* ,2x

J2x,2

2E2x

G , ~6!
where the electronic transition matrix elements include E
allowed transitions:

J1,1x
5^1,2* uHDQu1x,2& and

~7a!

J1x,1* 5^1x,2* uHDQu1* ,2&.2* ←2,

J2* ,2x
5^1,2* uHQDu1* ,2x& and

~7b!

J2x,25^1,2xuHQDu1* ,2&.1←1* ,

and the nondiagonal vibronic transition matrix elements
Hph are given by:
-

f

^1x ,ns,q61uHph~1!u1* ,ns,q&

5^ns,q61u«uns,q&g1x,1* e7 iq•R1,

^1,ns,q61uHph~1!u1x ,ns,q&5^ns,q61u«uns,q& f 1,1x
e7 iq•R1,

^2x ,ns,q61uHph~2!u2,ns,q&5^ns,q61u«uns,q& f 2x,2e
7 iq•R2,

^2* ,ns,q61uHph~2!u2x ,ns,q&

5^ns,q61u«uns,q&g2* ,2x
e7 iq•R1. ~8!

Using this notation, in formula~3! the coefficientsg( j )
5gj* , j* and f ( j )5 f j , j are diagonal elements.

In the derivation from Eq.~4! to Eq. ~5!, the approxima-
tions
5-3
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S. XIA AND P. A. TANNER PHYSICAL REVIEW B66, 214305 ~2002!
2E2x
7\vs,q'E12E2x

'2E2x
!0, ~9a!

~E12E1x
!7\vs,q'E12E22E1x

'2E1x
!0, ~9b!

have been employed. Since the energiesE1x
, E2x

are ener-

gies within the configuration (4f N21)(5d)1, then u2Ei x
u is

much bigger than the phonon energies\vs,q , E1 andE2 , as
shown in Fig. 2. As mentioned before, the cancellation in
diagonal (EQ↔EQ,V) transition element@see Eq.~1!# arises
from the opposite sign in front of the two terms contained
it, which is due to the energy of the intermediate state be
one phonon higher or lower than that of the initial sta
However, due to the relationship~9!, the two terms corre-
sponding to the different operating order ofHQD andHph(2)
in Eq. ~4! have almost the same denominators, with th
being dominated by the same energy with the same s
(2E2x

). This is also the case for the two terms related

HDQ andHph(1). Therefore, the above cancellations~i! and
~ii ! occurring in the diagonal (EQ↔EQ,V) processdo not
occur in the nondiagonal (EDV↔EQ) process.

III. ELECTRON-PHONON COUPLING HAMILTONIAN
AND ONE-PHONON-ASSISTED ENERGY TRANSFER

MATRIX ELEMENT BASED UPON THE DEBYE PHONON
MODEL

We have presented a description of the Debye mode
vibration and the localized electron-phonon coupling with
this model in Appendix A.

If we introduce the direction averaged strain tensor«(Rj )
at Rj , then we may write the localized electron-phonon co
pling Hamiltonian as

Hph~ j !5
]Hc f~Rj !

]«~Rj !
«~Rj !, ~10!

FIG. 2. Representation scheme for nondiagonal phonon-ass
energy transfer from donor~1! to acceptor~2!. The phonon energy
\vsq is equal to the intersite energy mismatch.
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^ j * ,ns,q61uHph~ j !u j * ,ns,q&

5^ j * u
]Hc f~Rj !

]«~Rj !
u j * &^ns,q61u«~Rj !uns,q& ~11!

5g~ j !^ns,q61u«uns,q&e
7 iq•Rj , ~12!

where, as in HLO theory, we introduce the coefficientg( j ).
Utilizing the expression~A11! of «(Rj ) and the matrix ele-
ment ~A12! of « from the HLO treatment,2 from Eqs.~11!
and~12! we obtain the following expression forg( j ) used in
the HLO theory as follows:

g~ j !5^ j * u
]Hc f~Rj !

]«~Rj !
u j * &. ~13!

Similarly,

f ~ j !5^ j u
]Hc f~Rj !

]«~Rj !
u j &. ~14!

If we use Eqs.~A13! and ~A14!, we may obtain more de
tailed expressions~A16! and ~A17! for g( j ) and f ( j ), re-
spectively, in which only the terms with evenk contribute.

Now it is possible to write the coupling parameters
Eqs. ~6! and ~8! for the nondiagonal (EQ↔EDV) energy
transfer process as follows:

g1x,1* 5^1xu
]Hc f~R1!

]«~R1!
u1* &, ~15!

and so on. By the crystal field expansion of theHc f , as in
Eq. ~A13!, we have the expressions~A19! and~A20!, etc., in
which only the terms with oddt contribute.

Moreover, if we use the perturbation theory takingHph( j )
as the perturbation Hamiltonian, we may make the transit
t-matrix elements~4!–~6! simpler and physically clearer. Fo
example, we may have the following first-order approxima
initial and terminal states:

u@1* #,2,ns,q&5u1* ,2,ns,q&1(
1x

u1x,2,ns,q61&

3
^1x,2,ns,q61uHph~1!u1* ,2,ns,q&

E12~E1x
6\v

s,q
!

,

~16!

^@1#,2* ,ns,q61u5^1,2* ,ns,q61u1(
1x

^1x,2* ,ns,qu

3
^1,2* ,ns,q61uHph~1!u1x,2* ,ns,q&

6\vs,q2E1x

.

~17!

TheHph(2) can also give similar states. By referring to Eq
~7!, ~11!, ~12! and ~A19!, ~A20!, etc., we see thet-matrix
element~4!–~6! can be rewritten as

ted
5-4
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THEORY OF ONE-PHONON-ASSISTED ENERGY . . . PHYSICAL REVIEW B66, 214305 ~2002!
t f i>^@1#,2* ,ns,q61uHDQu@1* #,2,ns,q&

1^1,@2* #,ns,q61uHQDu1* ,@2#,ns,q& ~18!

5^ns,q61u«uns,q&e
7 iq•R2

†^@1#,2* uHDQu@1* #,2&e6 iq•R

1^1,@2* #uHQDu1* ,@2#&‡, ~19!

where

^@1#,2* uHDQu@1* #,2&>(
1x

J1,1x
g1x,1* 1 f 1,1x

J1x,1*

2E1x

,

~20!

^1,@2* #uHQDu1* ,@2#&>(
2x

J2* ,2x
f 2x,21g2* ,2x

J2x,2

2E2x

,

~21!

in which u@1* #& is the first-order approximative wave func
tion of the donor, corrected by]Hc f(R1)/]«(R1) in Eq. ~10!
of Hph(1).

To make the electronic transition matrix element in E
~20! more tractable, first we write the ED-EQ interactio
Hamiltonian between the donor and acceptor as a sphe
tensor:7,8

HDQ5
e2

R4 (
q1q2

Cq1q2

12 ~Q,F!Dq1

~1!~D !Dq2

~2!~A!, ~22!

where

Cq1q2

12 ~Q,F!52A 7!

2!4! S 1 2 3

q1 q2 2~q11q2!
D

3Cq11q2

~3! ~Q,F!* , ~23!

in which Q andF belong to the polar coordinates (R,Q,F)
of vectorR and

Cq
~k!5A 4p

2k11
Yq

~k! . ~24!

Then we use the well-known Judd closure approximation
the matrix element:9

^@1#,2* uHDQu@1* #,2&

5
e2

R4 (
q1q2

Cq1q2

12 ~Q,F!^2* uDq2

~2!u2&^@1#uDq1

~1!u@1* #&,

>
e2

R4 (
q1q2

Cq1q2

12 ~Q,F!^2* uDq2

~2!u2&(
ltp

^1uUp1q1

~l! u1* &

3~21!p1q@l#S 1 l t

q1 2~p1q1! pDAtp
l ~«!, ~25!

where

Atp
l ~«!5

]Ap
t ~R1!

]«~R1!
J~ t,l!, ~26!
21430
.
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r

in which the expression forJ(t,l) was given by Judd.9 The
values of the parametersAtp

l («) can be obtained by fitting
the corresponding EDV transition intensities in the abso
tion or emission spectra, based upon the model used he
in which the phonons are described by the Debye mode

From Eq.~25! it is evident that for (EDV↔EQ) energy
transfer, the EDV transition~of the donor, say! satisfies the
same selection rules for total angular momentumJ as does
an ED transition of a rare-earth ion in a noncentrosymme
system. That is, the triangle relation (Jf ,l,Ji) with l52, 4,
6 must be satisfied. Furthermore, the EQ transition~of the
acceptor, say! has selection rules based upon (Jf ,2,Ji).

IV. „EDV^EQ… ENERGY TRANSFER RATE
BASED UPON THE DEBYE MODEL

Following the HLO model we take the donor and accep
ions to be identical andf (1)' f (2)5 f , g(1)'g(2)5g,
which means thatu1* & is similar to u2* &, as is the case for
energy migration. Then using the Fermi golden rule toget
with Eq. ~6! we obtain the (EDV↔EQ) energy transfer rate

W2←15
2p

\ (
s,q

ut f i u2d~\vs,q6DE12!, ~27!

>
2p

\
u^@1#,2* uHDQu@1* #,2&u2

3(
s,q

@ u^ns,q61u«uns,q&u2

3hN
I ~q,R!d~\vs,q6DE12!#, ~28!

where

u^@1#,2* uHDQu@1* #,2&u25U(
1x

J1,1x
g1x,1* 1 f 1,1x

J1x,1*

2E1x

U2

5U(
2x

J2* ,2x
f 2x,21g2* ,2x

J2x,2

2E2x

U2

5u^1,@2* #uHQDu1* ,@2#&u2 ~29!

and

hN
I ~q,R!5ue6 iq.R11u2. ~30!

Note that the HLO coherence factor for the diagonal proc
is given by a formula similar to Eq.~30!, but with a negative
instead of positive sign, in Ref. 2. In the derivation of Eq
~28! and ~29! we have used the following relations:

J2x,25J1,1x
* , g2* ,2x

5g1x,1*
* , ~31!

J2* ,2x
5J1x,1*

* , f 2x,25 f 1,1x
* , ~32!

J1,1x
g1x,1* 5^1,2* uHDQu1x,2&^1x,2u

]Hc f~R1!

]«~R1!
u1* ,2&

5~J1,1x
g1x,1* !* . ~33!
5-5
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S. XIA AND P. A. TANNER PHYSICAL REVIEW B66, 214305 ~2002!
The quantities on the left-hand side of Eq.~33! are real, since
u1* ,2& and u1,2* & have the same phase factor, a
u1x,2&^1x,2u is real.

The golden rule equation~28! may be evaluated under th
Debye approximation. We follow the same equation~2.15! as
in Ref. 2:

(
s,q

F~s,q!5
V

2p2 (
s

1

Vs
3 E

0

vs,D

^F~s,q!&Vv2dv,

for any function ofs andq, whereV is the sample volume
v5uquVs5qVs whereVs and vs,D are the spread velocity
and Debye frequency for thesth polarization mode, respec
tively. We then obtain the energy transfer rate

W2←15
2p

\
u^@1#,2* uHDQu@1* #,2&u2

V

2p2 (
s

1

Vs
5 FasuDE12u3

2NM G
3Hn~ uDE12u!11

n~ uDE12u! J ^hN
I ~q,R!&V

1

\3

5
uDE12u3

2p\4r
u^@1#,2* uHDQu@1* #,2&u2

3(
s

as

Vs
5 Hn~ uDE12u!11

n~ uDE12u! J ^hN
I ~q,R!&V , ~34!

where r is the mass density, andn(uDE12u)5@e(uDE12u)/kBT

21#21. We conclude that the energy transfer rate is o
served to be proportional touDE12u3, which differs from the
linear dependence uponuDE12u in the HLO diagonal energy
transfer model.

We now analyze Eq.~34! under the two limits of energy
mismatches. In the case of the energy mismatch between
two sites being large~of the order of 100 cm21!, the wave-
length of the phonon involved in nonresonant energy tran
is of the same order as the intersite separation,q•R@1. The
coherence factor averages out:

^hN
I ~q,R!&V5^2@11cosq•R#&V52S 11

sinqR

qR D'2,

~35!

and we obtain a simple expression for the transfer rate,

W2←15
uDE12u3

p\4r
u^@1#,2* uHDQu@1* #,2&u2

3(
s

as

Vs
5 Hn~ uDE12u!11

n~ uDE12u! J , ~36!

for the emission or absorption of a phonon of energyDE12.
It is not difficult to obtain the vibronic transition rat

W2* ←2 of EDV absorption for the acceptor ion within th
Debye phonon model as follows:

W2* ←25
~DE!3

2p\4r
u^@2* #uHEDu@2#&u2(

s

as

Vs
5 @n~DE!11#,

~37!
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where the photon-electronic excitation energy differen
DE5\vg2E2 is equal to the energy\v of the phonon cre-
ated. It is evident that the dependences ofW2←1 uponuDE12u
andn(uDE12u) are the same@concerning the matrix elemen
refer to the relation between the far left side and the far ri
side of Eq. ~29!# as those ofW2* ←2 in Eq. ~37!, since
^hN

I (q,R)&V>2 is independent ofq, and both Eqs.~36! and
~37! are based on the density of statesrs(v)5Vv2/2p2Vs

3

}v2}DE2 of the Debye phonons.
We now consider further two limiting cases: when

uDE12u/kBT!1:

W2←1>
~DE12!

2

p\4r
u^@1#,2* uHDQu@1* #,2&u2 (

s

as

Vs
5 ~kBT!

~38!

and when

uDE12u/kBT@1:

W2←1>
~ uDE12u!3

p\4r
u^@1#,2* uHDQu@1* #,2&u2

3(
s

as

Vs
5 @e2uDE12u/kBT#. ~39!

The result~38! differs from that for the analogous diagon
one-phonon-assisted energy transfer process where the
ergy transfer rate isindependentof energy mismatch. In the
present case, a quadratic dependence is obtained. In
cases, however, the energy transfer rate is linearly depen
upon temperature.

Considering the case when the energy mismatch betw
the two sites is small, then the quantityq•R!1. Under this
condition, the coherence factor

^hN
I ~q,R!&V52S 11

sinqR

qR D>2F11S 12
1

6
q2R2D G

542
1

3
q2R2>4, ~40!

which is much greater than the corresponding value 2@1
2(12 1

6 q2R2)#5 1
3 q2R2 for the diagonal process in Ref. 2

Then, we obtain for the two limiting cases:

uDE12u/kBT!1:

W2←1>
2~DE12!

2

p\4r
u^@1#,2* uHDQu@1* #,2&u2(

s

as

Vs
5 ~kBT!,

~41!

uDE12u/kBT@1:

W2←1>
2~DE12!

3

p\4r
u^@1#,2* uHDQu@1* #,2&u2

3(
s

as

Vs
5 @e2uDE12u/kBT#. ~42!
5-6
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THEORY OF ONE-PHONON-ASSISTED ENERGY . . . PHYSICAL REVIEW B66, 214305 ~2002!
For diagonal one-phonon-assisted processes, the en
transfer rate for a small energy mismatch is much smaller@by
the factor 1

3 q2R2:25(qR)2/65(DE12R/Vs\)2/6] than that
for a large energy mismatch, and the process has been
sidered to be unimportant.2 The result for the nondiagona
one-phonon-assisted process for a small energy mismatc
Eq. ~41! is, however, twice of that for a large energy mi
match, in Eq.~38!. This means that a small energy mismat
in nonresonant energy transfer could be made up by no
agonal acoustic phonon processes~as long as the density o
phonon states with energy\vsq5uDE12u is not too small!
and that the energy transfer rateW2←1 increases with in-
creasing mismatchuDE12u. At room temperature, this mis
match may then range up to ca. 30 cm21. This is significant
for energy transfer and, moreover, for energy migrati
since an exact energy match between the two sites is se
achieved. Thus the nondiagonal process is expected to b
important contributor to the energy migration and trans
mechanism in many systems. Notice that, as pointed ab
the aboveuDE12u2 dependence of the rateW2←1 in Eqs.~38!
and ~41! is brought about from the same background:
Debye relationvsq5Vsq, as is also the rate ofW2* ←2 in Eq.
~37! when uDEu!kBT. We find some experimental refe
ences~e.g., Figs. 2 and 3 in Ref. 6, Fig. 2 in Ref. 10, and F
1 in Ref. 11! concerning intraconfigurationalf N- f N transi-
tions of rare-earth ions where the profile of lower-ener
vibronic structure approximates to the density of states of
vibrations of the undisturbed lattice, i.e., is proportional
uDEu2, as expected from Eq.~37! under the condition tha
uDEu!kBT. Notice that the Debye model which we hav
employed is applicable to acoustic phonons, especially
phonons with small wave vectorq. The uDE12u2 dependence
of W2←1 could only be valid within smalluDE12u, which
should be rather smaller than\vs,D .

V. LOCAL SYMMETRY SHELL MODEL AND LATTICE
WAVE MODEL OF VIBRATION

Several decades ago, some studies of the vibronic tra
tions in the electronic spectra of rare-earth ions in so
employed lattice waves in constructing standing waves
scribing the local vibrations of rare-earth ion systems.10–14

The recent trend in this subject area, however, has bee
use directly~without involving lattice waves! a moiety-mode
model for the treatment of rare-earth vibrations,15–17not only
because of its simplicity, but also because the rare-earth
phonon coupling interaction is localized. In the case of
ergy transfer phenomena, there are two localized elect
phonon couplings involved: for the donor and accep
ions located at rather close positions. These are couple
each other so that many ions in the crystal are subject to
electron-phonon coupling interactions. Thus coherence
fects of the running waves of the vibration need to be c
sidered, just as in HLO theory, due to the propagation of
lattice wave between the two sites. The localized moi
model of vibrations is unable to handle these types of ph
cal effects. Notably, for nondiagonal phonon-assis
(EQ↔EDV) energy transfer processes, only odd-par
phonons~in centrosymmetric systems! are involved, and the
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most important interaction is the one between thet51 elec-
tric dipole of the rare-earth ion and the odd-parity phon
~say,t1u in Oh symmetry! at the rare-earth site.10,16The field
of the electric dipole is extensive6,10 compared with that of
an electric quadrupole (t52), which is the most importan
field involved in the above diagonal, for examp
(EQ↔EQ,V), energy transfer process. Thus it is required
adopt the lattice wave model especially for the phonon
volved in the nondiagonal phonon-assisted energy tran
process. However, in order to take into account the local
tion of the coupling and for the convenience of step-by-s
approximate calculations, we have also adopted a s
symmetry shell model of vibrations to express the localiz
coupling Hamiltonian. This model follows the model calc
lation of the vibronic sidebands of Cs2UBr6 ,10,18where each
of the structured features in a vibronic sideband was cha
terized by a localized site symmetry and composed of c
tributions from related standing waves which are linear co
binations of lattice waves. Therefore, we introduce t
definitions of the localized shell model and the lattice wa
model of phonons, and discuss their interrelationship.

We begin this section with the discussion of the loc
site-symmetry coordinate of vibration. For the convenien
of considering and computing the electron-phonon coupl
energy, crystal vibrations are classified according to the i
ducible representations~irreps! of the site groupG of the
rare-earth ion donor~1! and/or acceptor~2!. Then the sur-
rounding atoms are classified as shells~composed of atoms
of the same type! located at the same distanceudnu ~or uanu)
from rare-earth ion 1~or 2!: see Fig. 3. For simplicity, we use
the vector notationdn @or an] itself to identify the atom lo-
cated at the position (R11dn) @or (R21an)] and write its
displacementu(dn) from this equilibrium position as

u~dn!5(
a

ua~dn!ia~dn!

5ux~dn!i~dn!1uy~dn!j ~dn!1uz~dn!k~dn!, ~43!

FIG. 3. Rare-earth ions and their environment of shells of ato
in a crystal. The adjacent rare-earth ions are represented by
and solid circles, and the neighboring shells of atoms by circ
dots.
5-7
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where the starting point ofia(dn) ( i15 i,i25 j ,i35k), de-
pends upondn , but its direction is independent ofdn . Then,
using the projection operators of groupG, we can obtain the
symmetry-adapted vibrational coordinateQnb(D) of the nth
shell of the rare-earth ion 1:

Qnb~D !5AMnunb5 (
dn ,a

aa
nb~dn!* AMnua~dn!, ~44!

with a similar expression for ion 2. In this equatio
AMnua(dn) is a mass-weighted displacement coordinate
atomdn ; the indexb is

b5~ i th,G,g! of group G, ~45!

and is a shorthand symbol for thei th ~Gg! irrep of groupG
amongst theaG irreps~Gg! contained in the vibrations of th
nth shell, and the transformation matrix is orthogonal~real
unity! as shown in Eqs.~B1! and ~B2!. For example, for an
octahedrally coordinated rare-earth ion, the vibrations of
six ligands contribute two symmetry-adaptedt1u-type Qnb

moiety modes according to Eq.~44!, but the actual two
t1u-type moiety-mode vibrationsQb

n are a mixture of these
modes, where the mixing coefficients are decided by
force constants of the studied system from the solutions
the appropriate dynamic equations.

We now turn our attention to the lattice wave formalis
In the following, we only utilize the symmetry-adaptedQnb

to study electron-phonon coupling, whereas for the treatm
of phonons themselves, we use lattice waves with nor
coordinatesQq

s , which are solutions of dynamic equation
having a definite wave vectorq:

Qq
s5

1

AN
(

Rl ,p,a
e2 iq•Rlaa

qs~p!* AMpua~Rl ,p!, ~46!

where N5number of cells5number of q in the Brillouin
zone;AM pua(Rl ,p) is the mass-weighted displacement c
ordinate of atomp located at the (Rl1p) position, in which
Rl is the representative position of thel th primitive unit cell
and thep itself is used to identify the atom shifted byp from
the positionRl . The indexs is a shorthand symbol, analo
gous to Eq.~45!:

s5~ i th,G,g! of group S~q!, ~47!

where the space groupS(q) ~a subgroup of the space grou
S describing all the symmetry properties of the crystal! is the
group of the wave vectorq. The actualQq

s are also mixtures
of several symmetry-adapted coordinatesQsq of the same
type, andQsq can be obtained using the projection operat
of groupS(q).

The transformation matrix thus obtained is complex u
tary as shown in Eqs.~B4! and~B5!. By referring to Appen-
dix B 2, we may have, from Eq.~46!,

AMpua~Rl ,p!5
1

AN
(
q,s

eiq•Rlaa
qs~p!Qq

s , ~48!
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which means that the atomp within a cell participates in the
vibration of all 3gN lattice waves, each with a definiteq and
s (g5number of atoms within a cell!. The components of the
polarization vector of atomp for the lattice waveqs are
(N21/2)aa

qs(p) multiplied by a phase factoreiq•Rl determined
by the particular cell the atom is located in. Equation~48!
corresponds to the Eq.~A1! in the Debye model, but with
complex conjugate phase factor due to use of the conven
of Eq. ~5! in Ref. 11.

By referring to Appendix B 3, we have

Qnb~D !5(
qs

^nbuqs&DQq
s , ~49!

where

^nbuqs&D5
1

AN
(

dn ,a
aa

nb~dn!* aa
qs@p~dn!#eiq•Rl ~dn!

~50!

transforms the normal coordinatesQq
s into the symmetry-

adapted coordinatesQnb(D) of the nth shell around the do-
nor ion. We note that̂nbuqs& was introduced aŝbnukl& by
Chodos and Satten,10 but without the definition in Eq.~50!.
Notice that the factorN21/2 in Eq. ~50! makes the quantity
^nbuqs&D very small, whereas the term number 3gN of the
summation overq and s in Eq. ~49! is very large. Thus for
anyactualcalculation, the value ofN must be large enough
for example, 1012 independentq in irreducible 1/48 of the
Brillouin zone, which corresponds to 5154q, by extending to
all wings of the q star $q%, each of them has aq in the
irreducible zone as a wing, as executed by Ref. 10.

Analogous to Eq.~50!, we have for the acceptor ion

^nbuqs&A5
1

AN
(

an ,a
aa

nb~an!* aa
qs@p~an!#eiq•Rl ~an!.

~51!

If ion 1 is identical to ion 2 and their sites are also equiv
lent, we have

p~an!5p~dn!, Rl~an!5Rl~dn!1R, ~52!

for the casedn5an , so that we obtain an important relatio
for energy migration:

^hbuqs&A5^nbuqs&Deiq•R ~53!

VI. ELECTRON-PHONON COUPLING HAMILTONIAN
AND ONE-PHONON-ASSISTED ENERGY TRANSFER

MATRIX ELEMENT BASED UPON THE LATTICE WAVE
MODEL OF PHONONS

Since the electron-phonon interaction is rather localiz
we may expand the electron-phonon coupling Hamilton
Hph( j ) as

Hph~1!5(
nb

f nb~D !Qnb~D !. ~54!

Substituting Eq.~49! into Eq. ~54!, we obtain
5-8
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Hph~1!5(
nb

f nb~D !(
qs

^nbuqs&DQq
s . ~55!

Due to the well-known relation~A7!, Eq. ~55! shows that
Hph(1) contains phonon operatorsQq

s of all lattice waves via
local site-symmetry displacement coordinatesQnb related to
them. The effective value ofnmax may not be large since th
operatorHph(1) is localized~all the contributions from shells
with n.nmax can be ignored!. Thus the adoption of the shel
vibration model introduces the ability to perform the step-b
step calculation ofHph(1).

We now consider the application of above results to
theory of one-phonon assisted energy transfer. We cons
both the diagonal energy transfer case, following the form
ism of HLO,2 and the nondiagonal case developed above

A. Diagonal energy transfer process

From Eqs.~55! and ~A7! we have

^1,nsq61uHph~1!u1,nsq&

5(
n,b

f nb~1!^nbu6qs&DA \

2vsq
HAnsq11

Ansq
J ,

~56!

where

f nb~1!5^1u f nb~D !u1&, ~57!

which can be calculated directly by Eq.~C1!, or by Eqs.~C2!
and ~C5!, and the selection rule of point groupG is directly
applicable. Similar to Eq.~57!, we may introducegnb(1),
f nb(2), andgnb(2), corresponding tog(1), f (2), andg(2),
respectively, of HLO theory.2

Therefore, by referring to Eqs.~1!–~3!, the (EQ↔EQ,V)
energy transfer matrix element is

t f i5
J

2DE12
HAnsq11

Ansq
JA \

2vsq
(
n,b

$^nbu6qs&D

3@ f nb~1!2gnb~1!#2^nbu6qs&A@ f nb~2!2gnb~2!#%.

~58!

Introducing Eq.~53! for migration, we obtain

t f i5
J

2DE12
HAnsq11

Ansq
JA \

2vsq
(
n,b

^nbu6qs&A

3$@ f nb~1!2gnb~1!#e7 iq.R2@ f nb~2!2gnb~2!#%

~59!

so that we observe that the cancellation between the
terms within the second set of curly parentheses still occ
just as the case of HLO theory. Furthermore,

t f i5
J

2DE12
HAnsq11

Ansq
JA \

2vsq

3H(
n,b

^nbu6qs&A~ f nb2gnb!J ~e7 iq•R21!,

~60!
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where

f nb5 f nb~1!5 f nb~2!, gnb5gnb~1!5gnb~2!. ~61!

B. Nondiagonal energy transfer process

From Eqs.~55! and ~A7! we have

^1x ,nsq61uHph~1!u1* ,nsq&

5(
n,b

g1x,1*
nb ^nbu6qs&DA \

2vsq
HAnsq11

Ansq
J ,

~62!

where

g1x,1*
nb

5^1xu f nb~D !u1* &5 (
odd t

p

]Ap
t ~D !

]Qnb~D !
^1xuDp

t ~D !u1* &.

~63!

Similarly, we have analogous expressions for the electr
phonon coupling coefficientsf 1,1x

nb , f 2x,2
nb , andg2* ,2x

nb . Thus,

just as from the Eqs.~4!–~9!, we obtain the expression of th
transition matrix element for the (EQ↔EDV) energy trans-
fer involving a (s,q) phonon:

t f i5HAnsq11
Ansq

JA \

2vsq
(
n,b

H ^nbu6qs&D

3(
1x

F J1,1x
g1x,1*

nb
1 f 1,1x

nb J1x,1*

2E1x

G
1^nbu6qs&A(

2x
F J2* ,2x

f 2x,2
nb 1g2* ,2x

nb J2x,2

2E2x

G J .

~64!

With the inclusion of Eq.~53! we obtain

t f i5HAnsq11
Ansq

JA \

2vsq
(
n,b

^nbu6qs&A

3H (
1x

F J1,1x
g1x,1*

nb
1 f 1,1x

nb J1x,1*

2E1x

Ge7 iq.R

1(
2x

F J2* ,2x
f 2x,2

nb 1g2* ,2x

nb J2x,2

2E2x

G J . ~65!

It is important to observe that both of the signs inside
second curly parentheses are the same, so that the can
tion which occurs in the diagonal process is not prese
Furthermore, for the case of energy migration, by using
similar discussion as in Eqs.~16!–~21! and ~31!–~33!, we
obtain
5-9
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t f i5HAnsq11
Ansq

JA \

2vsq
(
n,b

$^nbu6qs&A

3^@1#nb,2* uHDQu@1* #nb,2&%~e7 iq.R11!, ~66!

where

^@1#nb,2* uHDQu@1* #nb,2&5(
1x

F J1,1x
g1x,1*

nb
1 f 1,1x

nb J1x,1*

2E1x

G
5(

2x
F J2* ,2x

f 2x,2
nb 1g2* ,2x

nb J2x,2

2E2x

G
5^1,@2* #nbuHQDu1* ,@2#nb&,

~67!

in which theu@1* #nb& is the first-order approximative wav
function of the initial state of the donor, corrected by t
coupling function f nb(D) of Hph(1) in Eq. ~54!, which is
written as Eq.~C1!. The two elements in Eq.~67! can also be
approximately worked out by using Judd closure, as, for
ample, we have

^@1#nb,2* uHDQu@1* #nb,2&

5(
1x

F J1,1x
g1x,1*

nb
1 f 1,1x

nb J1x,1*

2E1x

G
5

e2

R4 (
q1q2

Cq1q2

12 ~Q,F!

3^2* uDq2

~2!u2&F(
ltp

^1uUp1q1

~l! u1* &~21!p1q1~2l11!

3S 1 l t

q1 2~p1q1! pDJ~ t,l!
]Ap

t ~D !

]Qnb~D !G , ~68!

in which

Atp
l @Qnb~D !#5J~ t,l!

]Ap
t ~D !

]Qnb~D !
~69!

are considered as parameters, whose values can be obt
from the fitting of the EDV sideband intensities of transitio
between the crystal field states of the donor, using the lo
ized phonon model forQnb.17 For example, in the simples
case, under thenmax51 approximation, a moiety modeQb is
a linear combination ofa1b shell modes,Q1b. If a rare-earth
ion is at an octahedral site, the most important terms in E
~54! and ~C1! of Hph(1) are those witht51, which corre-
spond to phononsQ1b with b transforming as thet1u irre-
ducible representation of theOh point group. Thus only the
two t1u-type moiety-mode phononsQ1b have nonzero coef
ficients ]Ap

1/]Q1b;aT and aF in Ref. 16. Under thenmax

52,3... approximations, the shell method of Chodos a
Satten10,18 is used for the phonon modes.

The selection rules on total angular momentumJ of the
relevant electronic transitions have been presented ab
21430
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We also have the usual site point group selection rule for
EDV transition: if we label the initial and final electroni
crystal field levels of the donor or acceptor by the irrepsG i

e

and G f
e , respectively, it is necessary that the direct prod

G i
e3G r contains an irrep in common with an irrep contain

in the direct productG f
e3Gb for the phononQnb creation

process, for example.
Besides, the projection coefficients^nbu6qs& in Eq. ~66!

of t f i contain selection rules, which can be obtained by
similar method to that used in Ref. 13. However, instead
starting from an entire irrep of the space groupS ~a linear
combination of whose basis components forms a stand
wave!, we should start from a ‘‘little irrep’’ of space groupS,
i.e., from an irrep of theq vector groupS~q!, a basis com-
ponent of which is a running wave. That is, we should n
multiply the character for a class of elements in groupS~q!
by the numberk of wings in theq star $q% when we deter-
mine its character in the site group.

VII. SINGLE-PHONON-ASSISTED ENERGY MIGRATION
RATE BASED UPON THE LATTICE WAVE MODEL

We now consider the transfer rate for one-phonon-assi
energy transfer, according to the diagonal and nondiago
processes. For simplicity, we only give the expression for
energy migration rate.

A. Diagonal energy transfer process

The energy migration rateW based upon Eq.~60! is

W5(
s,q

2p

\
ut f i u2d~\vsq6DE12!

5
\pJ2

uDE12u3
Hn~ uDE12u!11

n~ uDE12u! J (
nb

n8b8

@~ f nb2gnb!

3Dnn8
bb8~ uDE12u!~ f n8b82gn8b8!* # ~70!

where Dnn8
bb8 is the effective projected density of phono

states:

Dnn8
bb8~ uDE12u!5(

s,q
^nbu6qs&A^6qsun8b8&A

3d~\vsq6DE12!ue7 iq.R21u2. ~71!

In this equation, thed function and the factorue7 iq.R21u2

describe the efficiency of the (6qs) lattice wave phonon in
accomplishing the energy transfer from the points of view
energy conservation and coherence effects, respectively.
remaining two transformation matrices project the latt
wave into the shell vibration. Notice that the coherence f

tor does not occur in the analogous quantityrnn8
bb8 used in

Ref. 10 for vibronic band theory.
We digress here, in order to make some comparison

our results for diagonal energy transfer with those from HL
theory, which is the only alternative theory of phono
assisted energy transfer. It is evident from the above res
5-10
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that the coherence factor is the same as in HLO theory
that the same cancellation occurs in the energy transfer
expression. The energy transfer rateW in Eq. ~70! and the

Dnn8
bb8 in Eq. ~71! have contributions from all lattice wave

(qs). Since we are not dealing with isotropic, continuo
media, the Debye-type dispersion relationvs,q5vs(q)
5vsuqu is only applicable to acoustic phonons with smalluqu,
so that we require the entire dispersion relationsvs(q) for all
s andq to be available to complete the summation overs and

q in the definition ofDnn8
bb8 .

Without reference to the phonon dispersion curves o
specific system, we now give a general discussion of
contributions of different lattice wave phonons to the ene
transfer process. Generally, the sum of the phonon mode
performed first overR̂j , then overuqu, and finally overs, as
follows:

(
sq

~ !5(
s H (uqu F(

R̂j

~ !G J ,

where for a certain q, we have a q star, $q%
5$q1 ,q2 ,q3 ,...,qk%5$R̂1q,R̂2q,R̂3q,...,R̂kq%. Here R̂j are
operators of the crystallographic point groupG0 , among
which R̂15p̂ can be any element of the point groupP(q), all
of which keepq5p̂q5q1 invariant or equivalent. However
R̂2 gives another wing~or arm! q25R̂2q. Thek wings of the
q star, qj , have the same absolute valueuqj u5uR̂jqu5uq1u
5uqu and have the same vibration frequencyvsqj

5vsq

5¯ . Note that each lattice waveQqj

s is a running wave,

thus being different from a standing wave which is a line
combination of thek coordinatesQqj

s related to a$q%, used by

Satten for the description of vibronic transition bands13

However, since the different wings of a$q% can make up the
same energy mismatch, we perform the summation oveR̂j
first. This summation, which is over thek wings of a definite
q star, can be compared withk times the ‘‘average over the
solid angleV’’ of the squared strain tensor@Eq. ~2.6!# and of
the coherence factor@Eq. ~2.18!, etc.# in HLO theory.2 No-
tice, however, that our summation over wings is perform
for the product of the coherence factor and the project
factors, and the$q% itself is q direction dependent. Secon
the summation overuqu can contribute remarkably to the ra
W, for a few energy-suitable ‘‘flat’’ parts of the curvevs(q),
lying in high-symmetry directions, aroundq50, or on the
surface of the Brillouin zone. By contrast, in the Debye ph
non model, all phonon propagation directions are equiva
and the dispersion relation is simplyvs(q)5vsuqu. Finally,
the summation over different branchess in Eq. ~71! consid-
ers contributions from different branches of lattice wav
Our phonon modes have special symmetry properties i
cated by the symbolss and q, pertinent to the anisotropic
properties and to the crystal structure on an atomic sc
which effects their contribution to energy transfer as sho
in Eqs. ~66! and ~67!. However, only two transverse wave
and one longitudinal wave are introduced in HLO theory.
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We now consider the phonon contribution from the vie
point of the density of states, which is represented by thd
function in Eqs.~70! and ~71!, and remark upon the impor
tant differences from HLO theory. For example, flat optic
branches, even nearq50, have an appreciable density o
states and phonon energy of up to several hundred cm21.
These phonons can contribute to energy transfer proce
with large energy mismatch. However, optical phonons
not considered in HLO theory: especially for phonons w
smallq, one-phonon energy transfer processes are not im
tant because the density of states of Debye phonons is
almost zero~as well as the almost zero coherence factor!.

Detailed total density of states information is only ava
able for metals and semiconductors. Considering this in
mation, then generally, compared with the Debye-type p
non model used in Ref. 2, there are more phonons in
region (0.4– 0.6)vmax @due to the flat parts of the curv
vTA(q)], fewer phonons in the region (0.6– 0.8)vmax @no
density of states modes or only slanting parts ofvLA(q)
therein#, and more phonons in the region (0.8– 1.0)vmax @due
to many flat parts ofvLO(q) andvTO(q)] which occur and
contribute to energy transfer. Few studies of the phonon d
sity of states are available for insulators containing rare e
ions.10,19,20The comparison of the phonon density of sta
data for Cs2UBr6 with the Debye phonon model shows th
there are considerably more phonons in the regi
(0.1– 0.3)vmax, (0.38– 0.45)vmax, and (0.92– 1.0)vmax than
in the Debye model, but fewer phonons in the regi
(0.48– 0.92)vmax.

B. Nondiagonal energy transfer process

Based upon Eq.~66!, the energy transfer rateW is

W5
\p

uDE12u
Hn~ uDE12u!11

n~ uDE12u! J
3 (

nb
n8b8

@^@1#nb,2* uHDQu@1* #nb,2&Nnn8
bb8~ uDE12u!

3^@1* #n8b8,2uHDQu@1#n8b8,2* &#, ~72!

where

Nnn8
bb8~ uDE12u!5(

sq
^nbu6qs&A^6qsun8b8&A

3d~\vsq6DE12!ue7 iq•R11u2 ~73!

is also an effective projected density of phonon states, wh

differs from Dnn8
bb8 only by the coherence factor, as w

pointed out previously. Notice that the factorJ/uDE12u in Eq.
~70! has its appropriate form (J1,1x

or J1x,1* )/(2E1x
) con-

tained in the definition of Eq.~67! for the element
^@1#nb,2* uHDQu@1* #n8b8,2&, so that the factor@J/uDE12u#2

does not appear in Eq.~72!, but is present in Eq.~70!.
The above discussions concerning the sum overs andq in

Dnn8
bb8 are also applicable forNnn8

bb8 . The summation of all
phonon modes is first carried out over different wings of aq
5-11
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star, then overuqu, and finally over different branchess in Eq.
~73!. As mentioned above, flat parts of optical phonon d
persion curves can make important contributions to the
ergy transfer process. We emphasize that this also applie
points nearq50, which is different from our discussion o
nondiagonal energy transfer in Sec. IV, where we emplo
the Debye phonon model in which the phonon density
states nearq50 is negligible. Noticeably, in contrast to th
conclusions from HLO theory, both the density of states a
the coherence factor allow one optical phonon~even withq
50) to make an important contribution to energy trans
processes, for the nondiagonal case.

Based upon the above approximation and treatmen
Sec. VI the calculation of the energy transfer rateW in Eq.
~72! becomes tractable if we have the solution of the latt
dynamic equations for all lattice wavesqs. It is evident from
Eq. ~72! that the obtained value ofW thus calculated may be
very different from that obtained by the SOA or by on
considering the contributions from moiety modes due to
q-dependent coherence factor and transformation factor
Eq. ~73!.

At this point, it is pertinent to make a discussion about
coherence factor. First, for a lattice wave with low-symme
q, the number of wings in the$q% is large. Especially, with
generalq ~i.e., without any symmetry property!, the number
of wings is the maximum, which equals the number of o
erators in point groupG0 ~for example, 48 forOh). In this
case, the summation over different wings in a$q% approaches
the ‘‘average over the solid angle’’ in HLO theory, mention
in Sec. VII A. Then the coherence factor becomes

ue7 iq•R71u252~17cosq•R!→2S 17
sinqR

qR D ~74!

for diagonal@taking the negative sign in Eq.~74!# and non-
diagonal~taking the positive sign! processes. In this case,
the donor-acceptor distance

R5uRu@
l

2p
5

1

q
i.e. qR@1, ~75!

then the coherence term

S 72
sinqR

qR D→0. ~76!

In other words, the two running waves are no longer coh
ent, and the results are close to the usual treatment in w
the localized vibration model is usually employed. The
fore, from this point of view, the coherence effect is mo
remarkable for lattice waves with high-symmetryq.

Second, if the donor-acceptor distance

R.~RD1RA!, ~77!

which is the summation of the effective interaction radius
Hph(1) andHph(2), respectively, then the overlap betwee
the excitation~or deexcitation! regions of the lattice wave
created~or destroyed! at the donor and acceptor does n
exist any more. Therefore, the coherence effect between
two running waves could be ignored. In this case, we m
21430
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use localized mode models~including the moiety-mode
model! to describe the relevant phonon involved. We not
that (RD1RA) is quite large for thet51 dipole-phonon~say,
t1u) coupling involved in the nondiagonal energy trans
process, as mentioned in Sec. V. Thus the running w
model is more suitable for the nondiagonal process than
diagonal process.

Third, if the rare-earth donor and acceptor are doped
purity ions, a lattice wave with definiteq0 must be scattered
by them, changing it to be an approximative lattice wa
within a limited spatial domain~i.e., a superposition of lat-
tice waves withq’s distributing around theq0). In this case,
if the donor-acceptor distanceR is larger than the phonon
coherence lengthL, the radius of the domain where the la
tice wave ~as a kind of collective description! of the host
phonon is still valid, then the above coherence effect can a
be ignored.

Now we turn to the discussion of another related subje
The ‘‘spectral overlap’’ approach has been extensively u
in the interpretation of energy transfer phenomena, and u
ally no explanation is given as to why this approach can
extended to phonon-assisted energy transfer processes
no attention has been paid to the difference between diag
or nondiagonal processes.4 At this stage it is pertinent to add
a comment concerning the relationship between thet-
matrix element’’ approach described above and the SOA
Dexter1 for energy transfer processes, which involve non
agonal phonons. For the case of a one~emitted! phonon-
assisted nondiagonal (EDV↔EQ) energy transfer process
similar to the discussion in Eqs.~16!–~21!, the matrix ele-
ment t f i in Eq. ~66! can be written as

t f i5^@1#,nsq11;2* uHDQu@1* #,nsq ;2&

1^1;@2* #,nsq11uHQDu1* ;@2#,nsq&. ~78!

Therefore, the two terms of Eq.~78! correspond to the two
processes EDV-EQ and EQ-EDV, respectively, which
shown in Fig. 4.

Following Dexter,1 we may first averageu^@1#,nsq
11;2* uHDQu@1* #,nsq ;2&u2, whereR contained in theHDQ
is assumed to vary its orientation continuously. Since t
average has nothing to do with the structure of the wa
function, so the inclusion of antiparity electronic statesu1x&
needed for the nondiagonal process, and of phonon st
unsq11&, etc., needed for phonon assistance, do not cha
the result shown in Eq.~21! of Ref. 1. Second, we sum
u^@1#,nsq11;2* uHDQu@1* #,nsq ;2&u2 over all electronic
states of the donor and acceptor, while takingnsq as its av-
erage valuensq5(e\vsq /kBT21)21 at temperatureT. Thus
we obtain a result similar to Dexter’s equation~22! ~Ref. 1!:

u^@1#,ns,q11;2* uHDQu@1* #,ns,q;2&u2

}u^@1#,ns,q11ur1u@1* #,ns,q&u2u^2* uN2u2&u2,

~79!

wherer15( i
Nr1i is proportional to the electric dipole opera

tor of the donor ion, andN2 is the electric quadrupole opera
tor of the acceptor ion. This expression is the basis of
5-12
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FIG. 4. Spectral overlap of rare-earth ion d
nor and acceptor bands. The energy scale sho
the spectral overlap between the emission sp
trum of the donor and the absorption spectrum
the acceptor ion. Vibronic bands are represen
by broader spectral features than pure electro
transitions. Solid lines represent EQ→EDV en-
ergy transfer, while dashed lines represent ED
→EQ energy transfer.
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SOA of calculating the EDV-EQ energy transfer rate. Sim
larly, the second term of Eq.~78! forms the basis of the SOA
for EQ-EDV energy transfer, which for energy migratio
gives the same result as the SOA for EDV-EQ energy tra
fer, according to Eqs.~66! and ~67!.

However, the complex squareut f i u2 in Eq. ~78! contains
contributions from the cross terms of EDV-EQ and EQ-ED
These are not contained in the above SOA results
EDV-EQ and EQ-EDV transfer, and are represented by
coherence terms ofue7 iq•R11u2 in Eq. ~73!. This shows that
in the spectral overlap approach the coherence te
2 cos(q•R) are ignored in the following approximation:

ue7 iq•R11u252~11cosq•R!>2, ~80!

so that this approximation underestimates the energy tran
rate W by about a factor of 2 for the case ofq•R!1. A
similar consideration may apply to (EDV↔ED) nondiago-
nal energy transfer between a donor and acceptor located
noncentrosymmetric crystal field. Therefore, besides the
sence of the average over continuously varied orientation
R ~as it should be in a one- or two-dimensional system,
for one- or two-dimensional directional energy transfer!, the
t-matrix approach has additional contributions from t
above cross terms if the phonon coupling occurs both at
donor and acceptor positions. However, even these additi
terms are much too small to solve the discrepancy betw
the results from a spectral overlap calculation a
experiment.3–5

VIII. CONCLUSIONS

A theoretical framework and the method of application
phonon-assisted energy transfer between rare-earth ion
the f N electronic configuration in crystals has been presen
in this study. We have focused upon diagonal and nondia
nal single-phonon-assisted processes and have empha
the differences that occur.

First, following the HLO theory, in which the Deby
model of a phonon is used, we have shown that for a no
agonal one-phonon-assisted energy transfer process, th
herent cancellations, such as those occurring in the diag
process, are not present. Thereby, we have formulated
discussed the transition element and transition rate for
nondiagonal process, compared the related results with
ones of the diagonal process, and pointed out the effect o
acoustic phonon with smallq to the nondiagonal process
21430
-

s-

.
f
e

s

fer

n a
b-
of
r

e
al

en
d

f
of
d

o-
zed

i-
co-
al
nd
e

he
an

especially the (DE12)
2 dependence of the energy transf

rate.
Second, the running lattice wavesQq

s have been taken to
describe phonons involved in the energy transfer proc
and this takes into account the anisotropic properties
crystal structure on the atomic scale. This phonon mode
even different from the one-site standing-wave model u
by Satten and co-workers to account for features in vibro
sidebands, where a standing wave is a linear combinatio
running lattice waves. Since thef N electron-phonon coupling
has been considered to be localized, the local symmetric
placement coordinatesQnb of the shells of atoms have bee
taken, shell by shell, to calculate the electron-phonon c
pling energy. Thereby, mechanisms have been formulated
which we find that the difference between the coherence
fects of the diagonal and nondiagonal processes is
present, just as our above observation based upon the D
treatment of phonons. However, since the dispersion rela
vs(q) is not of the Debye type, the contributions from fl
parts of the phonon dispersion curves~i.e., from lattice
waves with high-symmetryq! are emphasized, especial
that one optical phonon~even withq50) makes an impor-
tant contribution to nondiagonal processes. This contra
with the conclusions of HLO theory. We have also includ
brief discussions about the simplification of the applicati
method of the theory, the selection rules, and coherence
fects. In addition, the relationship between the widely us
spectral overlap model and thet-matrix approach for nondi-
agonal phonon-assisted energy transfer has been exami

Finally, we provide a brief comment upon the relativ
importance of various one-phonon-assisted processes,
general sense. For centrosymmetric systems, the HLO th
is only applicable to the diagonal second-order (EQ↔EQ,V)
processes, and not to the nondiagonal second-o
(EQ↔EDV) processes, while the (ED↔EDV) processes
are forbidden. Indeed, in some studies, the distinction has
been clarified between the diagonal and nondiago
processes.4

If there is no inversion center, the diagonal (ED↔EQ,V)
energy transfer process is about 10 times slower than
diagonal (ED↔ED,V) process, from the following argu
ment. UsingW and P to represent the energy transfer ra
and single-center transition oscillator strength, respectiv
Dexter1 has given the following relation:

WDD

WDQ
'

PD

PQ
S R

l D 2

, ~81!
5-13
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whereR is the donor-acceptor distance, andl is the radiation
wavelength. For rare-earth ions at noncentrosymmetric s
of crystals, typically21,22 PD /PQ;107 and (R/l)2;1026,
so that WDD /WDQ;10. However, the nondiagona
(ED↔EDV) process is also important, since16,21–23

PDV /PD;1028/1026;1022, but diagonal (ED↔ED,V)
energy transfer is already a one-order-higher process tha
nondiagonal (ED↔EDV) process. Therefore our theory an
results also make sense to rare-earth ions at noncentro
metric sites of crystals.

In this study we have developed a framework for t
study of one-phonon-assisted energy transfer processe
tween rare-earth ions in solids which is significantly differe
from previous models. The same arguments can be follo
to extend the model to two-phonon-assisted nondiago
i.e., (EDV↔EDV), or to one-phonon-assisted nondiagon
(EDV↔MD) energy transfer processes, and since this ex
sion is straightforward, we do not present the results. We
now considering the application of our results to a mo
experimental system.
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APPENDIX A: ELECTRON-PHONON COUPLING
WITHIN THE DEBYE MODEL

The HLO model of diagonal energy transfer utilized t
Debye phonon model under the isotropic approximati
Here we follow this model and provide some derivations
present the detailed expressions of the relevant elect
phonon coupling parameters. We understand that the H
model considers a crystal to be a continuous isotropic
dium, so that the details of its structure on the atomic sc
and of the anisotropy are ignored.

Under the Debye phonon model, the displacement of ioj
from its equilibrium positionRj can be written as

u~Rj !5(
s,q

1

ANM
Qq

seq
se2 iq•Rj ~A1!

whereN and M are the number of lattice sites and mass
the ion, respectively;eq

s is the real polarization unit vector o
the phonon modes, q, which only depends upon the direc
tion of the phonon wave vectorq and the three differen
types of polarization indexs ~corresponding to one longitu
dinal and two transverse modes!. Qq

s is the corresponding
normal coordinate. Sinceu is real, we have the relations

Q2q
s 5Qq

s* , ~A2!

if we choose

e2q
s 5eq

s5eq
s* . ~A3!
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We define the strain tensor

«ab~R!5
]ua~R!

]Rb
5(

s,q

1

ANM
Qq

sea
s ~2 iqb!e2 iq•R,

~A4!

wherea, b5x,y,z, and we omit the dependence upon t
direction ofq by writing

ea
s 5~eq

s!a . ~A5!

Based upon the isotropic properties, we have

«ab~R!5
1

2
@«ab~R!1«ba~R!#. ~A6!

We also expressQq
s in phonon-number representation:

Qq
s5AF \

2vs,q
G~aq

s11a2q
s !, ~A7!

where the creation operatoraq
s1 is for q, while the destruc-

tion operatoraÀq
s is for 2q, to meet the requirement of Eq

~A2!. Then, by combining Eqs.~A4!–~A7!, we obtain

«ab~R!5(
s,q
AF \

2NMvs,q
G~aq

s11a2q
s !

3
~2 i !

2
~ea

sqb1eb
s qa!e2 iq•R, ~A8!

which is almost the same as formula~2.5! of Ref. 2,
except ~i! for the factor (2 i ), which makes the quantity
@(2 i )/2#(ea

s qb1eb
s qa) for a certainq to be the complex

conjugate of that for (2q), to guarantee that«ab(R) is real,
and~ii ! the phase factore2 iq•R, which occurs in Eq.~2.4! of
Ref. 2.

Now we introduce the localized electron-phonon coupli
HamiltonianHph( j ) within this model:

Hph~ j !5(
ab

]Hcf~Rj !

]«ab~Rj !
«ab~Rj !, ~A9!

whereHcf(Rj ) is the crystal field energy operator for rar
earth ionj.

Following HLO,2 we approximate the tensor«ab by its
average value« over the solid angleV:

K U~2 i !

2
~ea

s qb1eb
s qa!U2L

V

5asq
2, ~A10!

whereas is a quantity of order of magnitude 1. Then E
~A9! becomes Eq.~10!, while the averaged strain is given b

«~Rj !5(
s,q
AF \asq

2

2NMvs,q
G~aq

s11a2q
s !e2 iq•Rj .

~A11!

Thus from Eqs.~11! and ~12!, and utilizing the matrix ele-
ment of« from the HLO treatment,2
5-14
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^ns,q61u«uns,q&5AF \asq
2

2MNvs,q
G3HAns,q11

Ans,q
J ,

~A12!

we obtain the expression~13! for g( j ) in Eq. ~12! used in the
HLO theory and similarly Eq.~14! for f ( j ).

Furthermore, we write the crystal field energy operator
follows:

Hcf~Rj !5(
k,q

Ak
q~Rj !Dq

k@r ~ j !#, k52,4,6, ~A13!

whereq is the index of a component of thekth-rank tensor
Dq

k ; Ak
q(Rj ) are the crystal field parameters of the rare-ea

ion j, and the electronic operator is given by

Dq
k@r ~ j !#5(

i
r i

kcq
k~ i !5A 4p

2k11 (
i

r i
kYq

k~u i ,w i !,

~A14!

in which the summationi goes over allf electrons of the
rare-earth ionj, so thatDq

2@r ( j )# is the quadrupole operato
etc. Then we are able to write more detailed expressions
Hph( j ), g( i ), etc.:

Hph~ j !5(
k,q

]Ak
q~Rj !

]«~Rj !
«~Rj !Dq

k@r ~ j !#, ~A15!

g~ j !5(
k,q

]Ak
q~Rj !

]«~Rj !
^ j * uDq

k@r ~ j !#u j * &, ~A16!

f ~ j !5(
k,q

]Ak
q~Rj !

]«~Rj !
^ j uDq

k@r ~ j !#u j &, ~A17!

where

]Ak
q~Rj !

]«~Rj !
5F(

ab

]Ak
q~Rj !

]«ab~Rj !
«ab~Rj !G 1

«~Rj !
~A18!

is a derivative averaged over solid angles.
Now it is possible to write the coupling parameters

Eqs. ~6! and ~8! for the nondiagonal (EQ↔EDV) energy
transfer process as follows:

g1x,1* 5(
t,p

F]At
p~R1!

]«~R1!
G^1xuDp

t @r ~1!#u1* &, ~A19!

f 2x,25(
t,p

F]At
p~R2!

]«~R2!
G^2xuDp

t @r ~2!#u2&, ~A20!

and so on, wheret51, 3, 5, 7 are odd numbers andDp
1@r (1)#

is the dipole operator of ion 1, etc., since the parity of t
virtual intermediate statesu1x& or u2x& is opposite to that of
the f N-electron statesu1* & or u2&, etc. The coupling coeffi-
cients, like in Eq.~A18!, are key factors for estimating th
values of theg’s and f’s coupling parameters in Eqs.~A16!,
~A17!, ~A19! and ~A20!.
21430
s

h

or

e

APPENDIX B: THE SHELL MODEL AND THE LATTICE
WAVE MODEL OF PHONONS
AND THEIR RELATIONSHIP

1. For the shell model, the transformation matrixaa
nb(dn)

in Eq. ~44! is orthogonal~real unitary!:

(
b

aa
nb~dn!* aa8

nb
~dn8!5(

b
aa

nb~dn!aa8
nb

~dn8!5ddnd
n8
daa8 .

~B1!

and

(
dn ,a

aa
nb~dn!* aa

nb8~dn!5 (
dn ,a

aa
nb~dn! aa

nb8~dn!5dbb8 ,

~B2!

so we obtain from them and Eq.~44!

AMnua~dn!5(
b

aa
nb~dn!Qnb~D !. ~B3!

2. The normal coordinates of lattice wavesQq
s are defined

in Eqs.~46! and~47!. Note that whenq is not on the surface
of the Brillouin zone, the irreps of the space groupS(q) in
Eq. ~47! can be represented instead by the irrep of the po
groupP(q) of the wave vectorq, which is a subgroup of the
crystallographic point groupG0 and is isomorphic to the fac
tor groupS(q)/T(I ) of the space groupS(q), with respect to
its translation subgroupT(I ).

The transformation matrix in Eq.~46! is complex unitary:

(
s

aa
qs~p!* aa

qs~p8!5daa8dpp8 , ~B4!

(
ap

aa
qs~p!* aa

qs8~p!5dss8 . ~B5!

From Eqs. ~46! and ~B4! and noticing S
q

e2 iq.(Rl2Rm)

5NdRlRm
, we obtain Eq.~48!.

3. We now observe that a certain atom can be identified
(R11dn) or (R21an), and also by (Rl1p). It is not diffi-
cult to establish the following relations:

Rl5Rl~dn! or Rl~an!, ~B6!

p5p~dn! or p~an!. ~B7!

Substituting Eq.~48! and Eqs.~B6! and ~B7! into Eq. ~44!
we obtain

Qnb5 (
dn ,a

aa
nb~dn!* AMpua@Rl~dn!,p~dn!#,

5
1

AN
(

dn ,a
q,s

aa
nb~dn!* aa

qs@p~dn!#eiq•Rl ~dn!Qq
s , ~B8!

and therefore obtain Eq.~49!.
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APPENDIX C: ELECTRON-PHONON COUPLING
WITHIN THE SHELL MODEL

AND THE LATTICE WAVE MODEL

1. The localized electron-phonon coupling Hamiltoni
Hph(1) is expanded in Eq.~54! by means of the shell mode
in which the expansion coefficientsf nb(D) can be written as

f nb~D !5
]Hcf~R1!

]Qnb~D !
5(

t,p

]Ap
t ~D !

]Qnb~D !
Dp

t ~D !. ~C1!

In the second step of Eq.~C1!, Hcf(R1) has been expresse
using a crystal field model, like Eq.~A13!, whereAp

t (D) are
crystal field parameters andDp

t (D) are electronic multipole
operators of the donor ion. The indext51,2,3...,7;p5t,t
21,...,2t; and the shell numbern50,1,2... .

2. It is not difficult to derive another expressions for t
coupling coefficientf nb(D) as follows:

f nb~D !5
]Hcf~R1!

]Qnb~D !
5 (

dn ,a

]Hcf~R1!

]ua~dn!

]ua~dn!

]Qnb~D !

5 (
dn ,a

]Hcf~R1!

]ua~dn!

aa
nb~dn!

AMn

, ~C2!

where Eq.~B3! has been used.
Furthermore, by substituting Eqs.~50! and ~C2! into Eq.

~55!, and using Eq.~B1!, we have

Hph~1!5(
nb

(
dn ,a

F]Hcf~R1!

]ua~dn! G aa
nb~dn!

AMn

3(
q,s

(
dn8 ,a8

aa8
nb

~dn8!* aa
qs@p~dn8!#eiq•Rl ~dn8!Qq

s 1

AN

5(
n

(
dn ,a

F]Hcf~R1!

]ua~dn! G 1

ANMn

3(
q,s

aa
qs@p~dn!#eiq•Rl ~dn!Qq

s . ~C3!

This equation presents a direct way to calculate the coup
energy of all lattice wavesQq

s via the respective vibrations o
all shell atomsdn participating in the movements of thes
lattice waves~we still can ignore all shell atoms withn
.nmax). Note that the local site-symmetry displaceme
Qnb are omitted so that the irrep symbolb of group G
thereby disappears. However, if we use the electronic op
tor f nb(D) instead of@]Hcf(R1)/]ua(dn)#, it is easier to
discuss the selection rule of the pertinent electronic tra
tion, since the electronic states are bases of the irrep@b in
Eq. ~45!# of the rare-earth site symmetry point groupG.

3. In order to calculate the electronic operat
@]Hcf(R1)/]ua(dn)# in Eqs.~C3! and~C2!, we may expand
the crystal field energyHcf(R1) of the donor as a sum of th
interaction energiesV(dn) between each shell atomdn (n
Þ0) and thef N electrons of the donor iond0 :
21430
g

s

a-

i-

r

Hcf~R1!5( 8
dn

V~dn!, ~C4!

where(8 means thatV(d0) is not included. Therefore, we
have

]Hcf~R1!

]ua~dn!
5

]V~dn!

]ua~dn!
, ~C5!

which permits the calculation of thef nb(D) in Eqs.~C2! and
~55!, and of theHph(1) in Eq. ~C3!.

Furthermore, based on Eq.~C5!, we may make Eq.~C3!
more simple. Notice thatV(dn) is the interaction energy be
tween atomdn and rare-earth iond0 , so that11

]V~dn!

]ua~d0!
52

]V~dn!

]ua~dn!
. ~C6!

Thus we can write the terms withn50 in Eq. ~54!, by re-
ferring to Eqs.~C2!, ~44!, ~B1!, and~C4!:

(
b

f 0b~D !Q0b~D !

5(
b

F(
a

]Hcf~R1!

]ua~d0!

aa
0b~d0!

AM0
G F(

a8
aa8

0b
~d0!* AM0ua8~d0!G

5(
a

]Hcf~R1!

]ua~d0!
ua~d0!

5(
a

F( 8
dn

]V~dn!

]ua~d0!Gua~d0!

5(
a

( 8
dn

]V~dn!

]ua~dn!
@2ua~d0!#. ~C7!

Similarly

(
n~>1!

(
b

f nb~D !Qnb~D !5 (
n~>1!

(
dna

]V~dn!

]ua~dn!
ua~dn!,

~C8!

so that Eq.~54! becomes

Hph~1!5(
ab

f nb~D !Qnb~D !

5 (
n~>1!

(
dna

]V~dn!

]ua~dn!
@ua~dn!2ua~d0!#, ~C9!

which is decided by the relative displacement@ua(dn)
2ua(d0)#, as it should be. Equation~C9! provides a direct
way to calculateHph(1) from atomic displacements.
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