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A theoretical framework and the method of application are presented to describe nonresonant energy transfer
processes between rare-earth ions of tleelectronic configuration at centrosymmetric sites of crystals, in
which the energy mismatch is made up by the emission or absorption of one “nondiagonal” phonon. The
established theory of Holstein, Lyo, and Orbd€et O) is applicable to, for example, an (EQEQ,V) energy
transfer process which is composed of an allowed pure electric quadrupole-electric quadBEQ€E)
nonradiative transition and a vibrational transition in which one “diagonal” phonon emission or absorption
occurs from a definite electronic state of the donor or acceptor. By contrast, the theory applies to an
(EQ—EDV) process where an EQ transition occurs at one site and one nondiagonal phonon in an electric
dipole vibronic(EDV) transition is involved at the other site. We find that for the ¢EBDV) process the
coherent cancellations occurring in the conventional diagonal HLO theory of one-phonon-assisted processes,
which lead to the dominance of two-phonon energy transfer processes, do not occur in the nondiagonal
one-phonon-assisted case. First, the Debye phonon model used by HLO theory has been employed, in which
the crystal is assumed to consist of an isotropic, continuous medium. This model is only applicable to acoustic
phonons with small wave vectar. The energy transfer rate obtained for the nondiagonal one-phonon-assisted
process increases quadratically with increasing intersite energy mismatch, when it is small compared with the
average thermal enerdgT at temperaturd. Second, to take into account the crystal structure on the atomic
scale which usually has anisotropic properties and to consider optical phonons, etc., the phonon involved in the
diagonal and nondiagonal energy transfer process has been described by a running lattice wave, as an irreduc-
ible representation basis component of the space group and of the solution of lattice dynamical equations. The
transition element and transition rate thus obtained show that the significant difference between the coherence
effects of the diagonal and nondiagonal cases still occurs. Furthermore, some new points arise, especially the
contributions from flat parts of the dispersion curves of optical phonon branches, to the studied processes.
Therefore, contrary to the conclusion of HLO theory, optical phonons @t can make important contri-
butions to one-phonon-assisted energy transfer processes for the nondiagonal case. In addition, the approxi-
mations inherent in the widely used spectral overlap model are pinpointed, and the selection rules and coher-
ence effect of lattice waves are briefly discussed. Noticeably, although we focus upon centrosymmetric
systems, however, the nondiagonal processes and the related results obtained in this paper are also applicable
to noncentrosymmetric systems.
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[. INTRODUCTION stein, Lyo, and Orbaéhsome decades ago. In the present
work we focus on another important type of nonresonant
Rare-earth-iofdoped materials exhibit pseudoatomic energy transfer termed nondiagonal phonon-assisted energy
sharp-linefN-fN luminescence which is parity forbidden by transfer. For example, in the case of this nondiagonal electric
the electric dipole(ED) mechanism(to first ordej. Transi- quadrupole-electric dipole vibronic (EQEDV) energy
tions are enabled by ésecond-ordgerED mechanism with transfer process, one phonon is involved in an EDV transi-
the odd-parity component of the crystal field Hamiltoniantion at one site to make up the energy mismatch, while also
H¢t and/or electron-phonon coupling Hamiltonibdy, (with  introducing odd-parity electronic operators making a transi-
an odd-parity phonon for centrosymmetric systgmas the tion between a &" state and a virtual #'~'5d state, etc. An
perturbation operator. Upconversion, quenching, and migraeQ transition occurs at the other site. In the notation em-
tion phenomena show that energy transfer is of major imporployed, the hyphen separates the donor and acceptor sites,
tance in the solid state. Resonant energy transfer has beént the double-headed arrow serves to show that the process
treated by Dextel. A (second-ordér theory of phonon- is composed of EQ-EDV) and (EDV-EQ). To our knowl-
assisted energy transfer in which a parity-allowiedcthe first ~ edge, the nondiagonal phonon-assisted energy transfer theory
orded nonradiative electronic transition of the donor- has not been well developed up to the presenten though
acceptor system is followed or preceeded by a “diagonal’some experimental results remain unaccountet e an-
phonon emission or absorptidifrom a definite electronic ticipated, however, that nondiagonal phonon-assisted energy
state of the donor or accepjpmaking up the energy mis- transfer would manifest some properties rather different from
match between the ions at two sites, was developed by Hothose of the diagonal process.
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In the Holstein-Lyo-OrbactiHLO) theory, a cancellation estimation of the transition element and its selection rules,
occurs in thet-matrix element of one-phonon-assisted diag-ensuing from application of the Judd closure approximation,
onal energy transfer between the corresponding terms dare described. In Sec. IV, the energy migration k&téor the
ground and excited states and between the donor and accepndiagonal process is obtained based on the Debye model
tor when the transition involves one low-momentum phonorof phonons, and the dependence upon energy mismatch and
and similar donor and acceptor ions, so that this process igpon temperature for several limiting cases is discussed. In
unimportant. However, in this paper, we point out that thisSec. V we review the shell model and the lattice wave model
cancellation does not occur for nondiagonal processes, withf phonons, and discuss their interrelationship. In Sec. VI,
the consequence that a faster energy transfer rate is expected give the expression of the electron-phonon coupling
to result. Hamiltonian based on the models in Sec. V. This is followed

Just as in HLO theory, first in the derivation and the dis-by the derivation of the elements; of both diagonal and
cussion of the theory, we assume that the participating phaiondiagonal single-phonon-assisted energy transfer, the sim-
non is approximately of the Debye type. However, this is notplification of the latter, and the discussion of some selection
appropriate for describing optical phonons and acousticules about the phonon involved. Section VII provides the
phonons with large wave vector, because of the implicit asexpressions for the energy migration rates of these processes
sumption that the crystal is a continuous, isotropic mediumbased on Secs. V and VI. Discussions are then included of
For a more realistic treatment, second, the lattice waveéhe summation over wave vector and different branches of
model of vibrations, considering the crystal structure on arthe dispersion curves of phonons, and of the coherence fac-
atomic scale and, therefore, the anisotropic properties, hasr. In addition, a discussion of the relationship between the
been introduced and incorporated into the energy transfguresentt-matrix approach and the SOA for the nondiagonal
theory. However, to take the localization of the rare-earthprocesses is made. Finally, the main conclusions of this study
ion-phonon coupling into account and for the convenience ofre given in Sec. VIIL.
step-by-step approximative calculations, we have also For simplicity, we assume that the rare-earth ions are lo-
adopted shell models of phonons to express the localizedated at centrosymmetric sites in the following discussion.
coupling Hamiltonian. Then the transition element and tran-The effects of changes in the equilibrium positions of nuclei
sition rate of both the diagonal and nondiagonal one-phononn normal vibrations, which accompany electronic transi-
assisted energy transfer processes have been obtained aiwhs, are ignored since these are minor for the case stfidied.
discussed based on the lattice wave model and shell model of
phonons. The different coherence factors for the diagonal (EQ—EQ,V) AND (EQ—EDV) t-MATRIX ELEMENTS
and nondiagonal processes obtained within the Debye pho- '
non model are found to be unchanged, and an optical phonon Figure 1 shows a typical energy transfer scheme from an
with zero wave vector can make an important contribution toexcited donof1*) to a ground-state accept{®. As an ex-
the nondiagonal one-phonon-assisted energy transfer prample, only the EQ type of parity-allowdd- fN transition is
cess, in contrast to the conclusion of the HLO theory. Finallyconsidered for the donor and acceptor transitions. We use the
we discuss under what approximation our results can renotation (EQ-EQ,V) to represent this diagonal energy
semble those from the usual spectral overlap approactiansfer, in which an electric-quadrupole—electric-
(SOA). quadrupole nonradiative electronic transition of the donor-

In Sec. Il the transition elementsg for the diagonal and acceptor system is followed or preceeded by a vibrational
nondiagonal processes are derived following the HLOtransition which could occur either at the donor or at the
theory. In Sec. lll, the rare-earth ion-phonon coupling Hamil-acceptor site. Therefore, both (EQ-BQ,and (V,EQ-EQ)
tonian Hy, based on the Debye model is defined and theare included. Then, for this one-phonon-assisted energy
elementt;; of the nondiagonal process is rewritten in termstransfer process with the intersite energy mismatdh;,
of the first-order approximative wave functions caused by=E,—E;=*%wsq, the expression for thé-matrix ele-

Hpn. Furthermore, more tractable methods of application ananent, from conventional HLO theory, is

|
HQQ| 1* ,2,"‘]5’(‘i 1><1* 121ns’qi 1| th(l) th(] )|1Y2* ’nS,qi 1><1’2\— ’nS,q| HQQ

teyi= 1,2 ng =1 1*,2n
1= 2, (12 nsq* [E1—(E1=hogg)] (E—Ey) 112059
J(ng o= 1]e|ng ye* 9 Re »
B—— v {[f(D)-g(n]e” " R-[f(2)-g(2)]}. (1)
[
where (1.nsq* LHp(i)]j N q) =(ns g * 1]e|ng ye ' Rif(j),
J=(1,2"|Hgq|1*,2) )

and for the ground electronic statp,
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<j*,ns,qr1|th<j>|j*,ns,q>=<ns,qr1ls|ns,q>eiiq‘Rjg(<j§5> l

2"y

for the excited electronic staf¢* ),
s andq denote the polarization and wave vector of the pho- 1*>

non involved, respectively, ald=R,—R;.

It is straightforward to observe that the cancellation arises T
from the opposite sign in front of the terfig(1)e*'9 R
+f(2)e*!9R2] and the term[f(1)e™'9 R+ g(2)e™!aRe],
The energy denominator of the former tef wg o, repre- E, E,
senting the phonon emission or absorption before energy
transfer, is exactly opposite to that in the latter,—E,,

AEy

representing phonon emission or absorption after energy |1} |2)
transfer. It is evident from Eq1) that the opposite sign leads e ———
to (i) the cancellation betweef(j) andg(j), and(ii) if q donor (1) acceptor (2)

-R<1 and ion 1 is similar to ion 2, the cancellation between
the donor and acceptor will be fairly complete. This makes FIG. 1. Scheme for diagonal phonon-assisted energy transfer
the single-phonon-assisted energy transfer process unimpdrem donor(1) to acceptor(2). AE;,=E,—~ E;=fwg, is the inter-
tant, so that higher-order processes need to be consideredsite energy mismatch, being0 for phonon absorption.

However, if the electronic transition of the donor or ac-
ceptor is parity forbidden, as, for example, in tHe fN ED  only an odd-parity phonon is involved in a nonradiative EDV
transition of a rare-earth ion, another kind of single-phonon4ransition at the donor or acceptor ion. Following the formal-
assisted energy transfer process plays an important rolsm of the HLO theory, thet-matrix element of the
which exhibits very different characteristics. In this process(EQ— EDV) process is

HQD| 1* 12>< ins,qi 1><1* 12x ans,qi 1| th(Z) + th(2)|112x vns,q><1v2x ans,q| |_|QD

tfi:<l,2c ,nsyqi 1|[ 2

2y _(szihws,q) (El_EZX)
+2 HDQllxyzins,qi1><1x121ns,qi1|th(1)+th(1)|1x12*rns,q><1x12*’ns,q|HDQ |1*,2,nsq>, (4)
I, E1—(Ey Fhogq) (E;—Ey —E2) ’
J1101 ¢+ f113 x| Jox oo 2T Qox2d0 o
~ 2 L9, L1, e+|q.Rl+z 2 2 22y e+|q.R2 <nsqtl|8|nsq>: (5)
1y _Elx 2 _sz ' '
J1191 1+ 111 1 Jox2f2 27092522 2
_ + Figq-R, T X TXT +ig-R x S
<ns,q—1|8|ns,q>e {12)( _Elx € +22X _sz ) (6)
[
where the electronic transition matrix elements include EQ- <1xrnsqi 1|th(1)|1*,ns q>

allowed transitions: Ci0R
=<ns,q_—'_1|8|ns,q>glx,l*e+lq. 5

J11=(1,Z|Hpo|1,,2) and o
ae P (1Ngq= 1| Hp( 1) 15.n ) = (N g = 1 e[ng o)1 1 €719°RS,

(7a)
Ju, x = (102" [Hpgl1*,2)22% 2, (24,Ns q= LHpn(2)[2,05 ) =(Ns g = 1|8|ns,q>f2x,zeiiq‘ Re,
Jax 2, =(1,2*[Hgpl|1*,2) and (2*n5,q+ 1|Hp(2)[24,Ns,)
(7b) = <ns,qi 1|8|ns,q>92* ,ZXEqu.Rl- (8)

— * *
J2x~2_<1'%<|HQD|1 2)D11%, Using this notation, in formula3) the coefficientsg(j)

=gjx,j+ andf(j)=f;; are diagonal elements.
and the nondiagonal vibronic transition matrix elements of In the derivation from Eq(4) to Eq. (5), the approxima-
Hyn are given by: tions
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donor (1) acceptor (2)

FIG. 2. Representation scheme for nondiagonal phonon-assisted

energy transfer from dondf) to acceptor2). The phonon energy
fiwgg is equal to the intersite energy mismatch.

—sziﬁws’q%El—E2X~—E2x<0, (93)

(El_Elx)Iﬁws,qul_E2_Elx%_Elx<01 (gb)

have been employed. Since the enerdigs E, are ener-
gies within the configuration (#'~*)(5d)*, then|—E; | is
much bigger than the phonon energias; o, E; andE,, as
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so that the matrix element:

<j*ans,qi1|th(j)|j*vnsq>

:<j*| Jde (R) | *><nsq—1| R')|ns,q> (11)

:g(j)<ns,qi 1|8|ns,q>e1iq-Rja (12

where, as in HLO theory, we introduce the coefficigij).
Utilizing the expressiorfAll) of &(R;) and the matrix ele-
ment (A12) of & from the HLO treatmen’( from Egs.(11)
and(12) we obtain the following expression fg(j) used in
the HLO theory as follows:

“( ) i) (13

9(j)=(j* |
Similarly,

Cf( J)

Ge(Ry) N (14)

f) =l —— =y
If we use Eqgs.(A13) and (A14), we may obtain more de-
tailed expression$A16) and (A17) for g(j) and f(j), re-
spectively, in which only the terms with evdancontribute.

Now it is possible to write the coupling parameters in
Egs. (6) and (8) for the nondiagonal (E& EDV) energy
transfer process as follows:

cf( 1

91 1+ = <1X|W|1*> (15

shown in Fig. 2. As mentioned before, the cancellation in the

diagonal (EQ-EQ,V) transition elementsee Eq(1)] arises

and so on. By the crystal field expansion of tHg;, as in

from the opposite sign in front of the two terms contained inEq. (A13), we have the expressiofA19) and(A20), etc., in
it, which is due to the energy of the intermediate state beingvhich only the terms with oddl contribute.

one phonon higher or lower than that of the initial state.

However, due to the relationshi{®), the two terms corre-
sponding to the different operating ordertd§p andH (2)

Moreover, if we use the perturbation theory takidg,(j)
as the perturbation Hamiltonian, we may make the transition
t-matrix element$4)—(6) simpler and physically clearer. For

in Eq. (4) have almost the same denominators, with thesexample, we may have the following first-order approximate
being dominated by the same energy with the same signinitial and terminal states:

(—Ez). This is also the case for the two terms related to
Hpg andHp(1). Therefore, the above cancellatiofis and

(i) occurring in the diagonal (EQ EQ,V) processdo not
occur in the nondiagonal (EDMEQ) process.

I[1%],2ng o) =|1* 205 ) + ; |1,42N5 g+ 1)

(15,205 = 1|Hp(1)[1*,20g )
_(Elxihwsq) !

IIl. ELECTRON-PHONON COUPLING HAMILTONIAN
AND ONE-PHONON-ASSISTED ENERGY TRANSFER
MATRIX ELEMENT BASED UPON THE DEBYE PHONON
MODEL

(16)

1],2*, +1|=(1,2, +1|+ 1,,2*,
We have presented a description of the Debye model of<[ 1:2%n5,q 1= Nsq™ 1 12 (Lo2" sl

vibration and the localized electron-phonon coupling within

this model in Appendix A.

If we introduce the direction averaged strain tens(R;)
atR;,
pling Hamiltonian as

cf( j)

Hpn(j) = (10

<12* Ns.q™ 1/Hpn(1)[14,2%, nsq>
_ﬁwsq—El

then we may write the localized electron-phonon cou-

17

TheH,(2) can also give similar states. By referring to Egs.
(7), (11, (120 and (A19), (A20), etc., we see thé&matrix
element(4)—(6) can be rewritten as
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tfiz<[1]12* 1n's,qi 1| HDQ|[1*]:2’ns,q>
+<1-[2*]vns,qi1|HQD|1*a[z]uns,q> (18)

=(nsq* 1le|ns oo™ I R([1],2°[Hpg|[1*],2)e 19 R

+(1[2*]|Hgp|1*,[2])], 9
where
J , g " *»+f ’ J I*
([11.2[Hogl[1*1.2=X — 1_E1“X =
X (20

Jox 2 f2 2t 02x 232 2
— EZX !
(21)
in which |[[1*]) is the first-order approximative wave func-
tion of the donor, corrected bjH .:(R4)/d(R;) in Eq. (10
of Hp(1).
To make the electronic transition matrix element in Eq.
(20) more tractable, first we write the ED-EQ interaction

<1,[2*]|HQD|1*,[21>522

Hamiltonian between the donor and acceptor as a spherical Wz

tensor’®

2
e
——E 12 @ 1) 2)
Hoo=Re & Caig,(©.9)Dg(D)D(A), (22

where
12 \/7 Loz :
Caya,(©:P)=~ m(% d> —(d1+0y)

XC, 0, (0,®)*, @3

in which ® and® belong to the polar coordinateR,®,d)

of vectorR and
[ 4 v
2k+1

(k) — (k)
clo= w,

q (24)

Then we use the well-known Judd closure approximation for

the matrix element:

([11.2*[Hpol[17].2)

e2
— 12
—s3C
d142

00,00, @)(2*[DY[2)([ 1] D[ 1*]),

e2
_ 12 @ (2) (N)
= g Cazar( @ ©)(2*1D12) 2, (LU [1%)
(—1)P*IA] - ) tA*() (25
X(— g),
a. —(p+qy p/ P
where
dAL(R,)
A _ p =
(€)= 72(Ry) E(t,N), (26)

PHYSICAL REVIEW @5, 214305 (2002

in which the expression fdE (t,\) was given by Judd.The
values of the parametevﬁs{‘p(s) can be obtained by fitting
the corresponding EDV transition intensities in the absorp-
tion or emission spectra, based upon the model used herein,
in which the phonons are described by the Debye model.
From Eq.(25) it is evident that for (EDV~EQ) energy
transfer, the EDV transitioof the donor, saysatisfies the
same selection rules for total angular momentilias does
an ED transition of a rare-earth ion in a noncentrosymmetric
system. That is, the triangle relatiods(\,J;) with A =2, 4,
6 must be satisfied. Furthermore, the EQ transitiohthe
acceptor, sayhas selection rules based upah,2,J,).

IV. (EDV—~EQ) ENERGY TRANSFER RATE
BASED UPON THE DEBYE MODEL

Following the HLO model we take the donor and acceptor
ions to be identical and(1)~f(2)=f, g(1)=~g(2)=g,
which means thafl*) is similar to|2*), as is the case for
energy migration. Then using the Fermi golden rule together
with Eq. (6) we obtain the (EDV-EQ) energy transfer rate

21
1= & tilPa(hosg=AE), (27)
2m * 2
X;} [|<ns,qi1|8|ns,q>|2
X hy(4,R) 8(fws g+ AE,)], (28)
where
J101,0¢ tF10 31 2¢] 2
([11.2*[Hogl[1*1.2)1*= | X E |

Jox 2 2 2t Qox ,2XJ2x,2‘ 2

2x _E2>< ‘
=[(1[2*]|Hopl1*.[2])]* (29
and
ha(g,R)=[e" 4R+ 1% (30

Note that the HLO coherence factor for the diagonal process
is given by a formula similar to Eq30), but with a negative
instead of positive sign, in Ref. 2. In the derivation of Egs.
(28) and(29) we have used the following relations:

sz,2=~]f,]xa 92*,2X=QIX,1* ; (31)
Joe 5, =01 10 fo =110, (32
(?Hcf(Rl)
Jl,]xglx,l*:“-vT|HDQ|1x12><1x12|TRl)|1*'2>
=(J1,,91,1¢)" (33
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The quantities on the left-hand side of E§3) are real, since where the photon-electronic excitation energy difference
|1*,2) and |1,2°) have the same phase factor, andAE=%w,—E; is equal to the energjw of the phonon cre-
[1,,2)(1,,2] is real. ated. It is evident that the dependence®\of_; upon|AE,)|

The golden rule equatiof28) may be evaluated under the andn(|AE;,|) are the samgconcerning the matrix element,
Debye approximation. We follow the same equati@ri5 as  refer to the relation between the far left side and the far right

in Ref. 2: side of Eq.(29)] as those ofW,+._, in Eg. (37), since
(hn(a,R))o=2 is independent of], and both Eqs(36) and
v 1 [osp (37) are based on the density of stajegw)=Vw?/272V3
R — 2 s
SE F(s.a) 27T225 V3 fo (F(s,@)q0 de, «w?xAE? of the Debye phonons.
q s

) . We now consider further two limiting cases: when
for any function ofs andq, whereV is the sample volume;

w=|q|Vs=qVs whereVg and ws p are the spread velocity |AE,|/kgT<1:
and Debye frequency for theth polarization mode, respec-

tively. We then obtain the energy transfer rate (AE )2 o
’ ¥ W 1= (11,2 [Hogll 17122 3 5 (eT)
27 v 1[adAE,® s
I * 2 | Zs= 1 (38
Wz 3 =5 [([1]2*Hooll 1121752 2 35| —5rim e
n(IAE12|)+1] | 1 AE|/keT>1:
{ n(|AE12|) <hN(q,R)>th | 12| B .
AEy))°
|AE _ (AEs])” 11,2 |Hpol[1*1,2)|2
= ity (1112 Hogl[ 17122 Wes= Topa,~ (1112 Hool[171.2)
ag n(|AEl2|)+1] | XE E[ef‘AE]_Zl/kBT] (39)
X > — 5 :
ZS Vg{ n(|AE12|) (hy(a,R))q (34 s Vg

The result(38) differs from that for the analogous diagonal

v i one-phonon-assisted energy transfer process where the en-
—1]7". We conclude that the Snhergy transfer rate is ob-rgy transfer rate independenof energy mismatch. In the
served to be proportional {&\E;|*, which differs from the present case, a quadratic dependence is obtained. In both
linear dependence upQAEj| in the HLO diagonal energy cases, however, the energy transfer rate is linearly dependent
transfer model. upon temperature.

“We now analyze Eq(34) under the two limits of energy Considering the case when the energy mismatch between
mlsm.atches.. In the case of the energy mismatch between thge o sites is small, then the quantilyR<1. Under this
two sites being largéof the order of 100 cmt), the wave- condition. the coherence factor

length of the phonon involved in nonresonant energy transfer

where p is the mass density, anai(|AE,|) =[e(/AF1)/keT

is of the same order as the intersite separatipiR>1. The | sinqR 1.,
coherence factor averages out: (hn(a,R)a=2| 1+ aR =2/1+|1-5aR
| singR 1
(hy(a,R))a=(2[1+cosq-R])o=2| 1+ R ~2, = —§q2R254, (40)

35
@9 which is much greater than the corresponding val(ié 2

and we obtain a simple expression for the transfer rate, —(1— 1g%R?)]=3q°R? for the diagonal process in Ref. 2.
Then, we obtain for the two limiting cases:

C|AEL® ot
WZHl_mK[l]rzﬂHDQ“:l 1,2)] |AE|/kgT<1:
223 n(|AE12|)+1] 2(AElZ)Z 2 ag
s W, =2 117, 2 Hp o[ 151,212 = (ke T),
ES: Vg[ n(|AEy]) |’ (36) 21= T s I{[1].2[Hpol[1*1,2)] ES: Vg( gT)
(41)

for the emission or absorption of a phonon of eneidy,,.
It is not difficult to obtain the vibronic transition rate |AE;,|/kgT>1:
W,x _, of EDV absorption for the acceptor ion within the

Debye phonon model as follows: 2(AE )3
W2<—15Tzllp|<[l]12*|HDQ|[l*]12>|2
w =ﬂ|<[2*]lH 22 SSIn(AE)+1]
2% 2 27h%p ED S v§ ' XE iss[eflAElz\/kBT]_ (42)
(37) S Vs
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For diagonal one-phonon-assisted processes, the enerc
transfer rate for a small energy mismatch is much smber /
the factor3g?R?:2=(qR)%/6=(AE,R/V)?/6] than that [
for a large energy mismatch, and the process has been cot }"\“‘9
1dz

sidered to be unimportaAtThe result for the nondiagonal .d"_“zl‘(?f)\
one-phonon-assisted process for a small energy mismatch i /1@ o REAS
Eqg. (41) is, however, twice of that for a large energy mis- T

match, in Eq(38). This means that a small energy mismatch / RN
in nonresonant energy transfer could be made up by nondi/ T \ -
agonal acoustic phonon processas long as the density of
phonon states with energyws,=|AE;,| is not too small
and that the energy transfer radé,,_, increases with in-
creasing mismatchAE;,|. At room temperature, this mis-
match may then range up to ca. 30 ¢mThis is significant
for energy transfer and, moreover, for energy migration,
since an exact energy match between the two sites is seldom
achieved. Thus the nondiagonal process is expected to be an FIG. 3. Rare-earth ions and their environment of shells of atoms
important contributor to the energy migration and transfefin a crystal. The adjacent rare-earth ions are represented by open
mechanism in many systems. Notice that, as pointed abovand solid circles, and the neighboring shells of atoms by circled
the abovd AE,,|? dependence of the raW,. ; in Eqs.(38)  dots.
and (41) is brought about from the same background: the
Debye relationwg,= V0, as is also the rate &,«. , in Eq.  most important interaction is the one betweenfttiel elec-
(37) when |AE|<kgT. We find some experimental refer- tric dipole of the rare-earth ion and the odd-parity phonon
encede.g., Figs. 2 and 3 in Ref. 6, Fig. 2 in Ref. 10, and Fig.(say,t,, in O,, symmetry at the rare-earth sit€:*6The field
1 in Ref. 13 concerning intraconfigurationd!-fN transi-  of the electric dipole is extensi®%&’ compared with that of
tions of rare-earth ions where the profile of lower-energyan electric quadrupolet € 2), which is the most important
vibronic structure approximates to the density of states of théield involved in the above diagonal, for example
vibrations of the undisturbed lattice, i.e., is proportional to(EQ—EQ,V), energy transfer process. Thus it is required to
|AE|?, as expected from Eq37) under the condition that adopt the lattice wave model especially for the phonon in-
|AE|<kgT. Notice that the Debye model which we have volved in the nondiagonal phonon-assisted energy transfer
employed is applicable to acoustic phonons, especially foprocess. However, in order to take into account the localiza-
phonons with small wave vectar. The|AE,,|? dependence tion of the coupling and for the convenience of step-by-step
of W,_; could only be valid within smallAE,,, which  approximate calculations, we have also adopted a site-
should be rather smaller thénosp, . symmetry shell model of vibrations to express the localized
coupling Hamiltonian. This model follows the model calcu-
lation of the vibronic sidebands of g4Brg, %8 where each
of the structured features in a vibronic sideband was charac-
terized by a localized site symmetry and composed of con-
Several decades ago, some studies of the vibronic transiributions from related standing waves which are linear com-
tions in the electronic spectra of rare-earth ions in soliddinations of lattice waves. Therefore, we introduce the
employed lattice waves in constructing standing waves dedefinitions of the localized shell model and the lattice wave
scribing the local vibrations of rare-earth ion systéfid?  model of phonons, and discuss their interrelationship.
The recent trend in this subject area, however, has been to We begin this section with the discussion of the local
use directly(without involving lattice wavelsa moiety-mode  site-symmetry coordinate of vibration. For the convenience
model for the treatment of rare-earth vibratidnst’not only ~ of considering and computing the electron-phonon coupling
because of its simplicity, but also because the rare-earth iorgnergy, crystal vibrations are classified according to the irre-
phonon coupling interaction is localized. In the case of enducible representation8rreps of the site groupg of the
ergy transfer phenomena, there are two localized electrorrare-earth ion donof1) and/or acceptof2). Then the sur-
phonon couplings involved: for the donor and acceptorrounding atoms are classified as shétlismposed of atoms
ions located at rather close positions. These are coupled @f the same typelocated at the same distanjek,| (or |a,|)
each other so that many ions in the crystal are subject to botfiom rare-earth ion lor 2): see Fig. 3. For simplicity, we use
electron-phonon coupling interactions. Thus coherence efthe vector notatiord,, [or a,] itself to identify the atom lo-
fects of the running waves of the vibration need to be concated at the positionR;+d,) [or (R,+a,)] and write its
sidered, just as in HLO theory, due to the propagation of thalisplacement(d,,) from this equilibrium position as
lattice wave between the two sites. The localized moiety
model of vibrations is unable to handle these types of physi- ,
cal effects. Notably, for nondiagonal phonon-assisted “(dn):%: Uy(dn)ig(dn)
(EQ—EDV) energy transfer processes, only odd-parity
phonons(in centrosymmetric systermare involved, and the =uy(d,)i(d,)+uy(dy)j(dy) +u,(dy)k(dy), (43)

V. LOCAL SYMMETRY SHELL MODEL AND LATTICE
WAVE MODEL OF VIBRATION
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where the starting point of,(d,) (i,=i,i,=],iz=k), de-  which means that the atomwithin a cell participates in the

pends upord,,, but its direction is independent df,. Then,  vibration of all 3yN lattice waves, each with a definiteand

using the projection operators of grogpwe can obtain the s (y=number of atoms within a c¢llIThe components of the

symmetry-adapted vibrational coordina8?(D) of thenth  polarization vector of atonp for the lattice wavegs are

shell of the rare-earth ion 1: (N~)a%(p) multiplied by a phase facta'? ® determined

by the particular cell the atom is located in. Equati@®)
_ _ n corresponds to the EqAl) in the Debye model, but with
Q"(D)= Munﬁ_d2a aaﬁ(d”)* ‘/M_“u“(d”)' (44 complex conjugate phase factor due to use of the convention
" of Eq. (5) in Ref. 11.
with a similar expression for ion 2. In this equation By referring to Appendix B 3, we have
JMu,(d,) is a mass-weighted displacement coordinate of

atomd, ; the indexg is QnB(D):E (nﬁIqs)DQz, (49)
gs
B=(ith,I',y) of group G, (45) where
and is a shorthand symbol for thith (I'y) irrep of groupg 1
amongst they irreps(I'y) contained in the vibrations of the = NB/ 4 \* A0S iq-R(dp)
nth shell, and the transformation matrix is orthogotralal (nflaspo \/ﬁdnza 3 (dh)"asTp(dy)Je
unity) as shown in Eqs(B1) and(B2). For example, for an (50)

octahedrally coordinated rare-earth ion, the vibrations of the . .
six ligands contribute two symmetry-adapteg-type Q" transforms the-_ normal coordinat€¥, into the symmetry-
moiety modes according to Eq44), but the actual two adapted coordinate®"?(D) of thg nth shell around the do-
t,,-type moiety-mode vibration®7 are a mixture of these nor ion. \We note tgg(tnmqs_} was introduced a@(_&’n|k)\) by
modes, where the mixing coefficients are decided by th Chqdos and Satt 'b“El,"g't.hO“t the definition in Eq(50):
force constants of the studied system from the solutions o otice that the factoN in Eq. (50 makes the quantity
the appropriate dynamic equations. n/5’|qs>,_3 very small, Whereas the term numbeyl3 of the
We now turn our attention to the lattice wave formalism, SUmmation oveq qnds in Eq. (49) is very large. Thus for
In the following, we only utilize the symmetry-adaptex? any actual calculation, the value dil must be large enough,

to study electron-phonon coupling, whereas for the treatme r exgmple, 101? independeqtin irreducible 1/48 (.)f the
of phonons themselves, we use lattice waves with norma rillouin zone, which corresponds to 5164by extending to

) s . ) ) . all wings of theq star {q}, each of them has g in the
coo_rdmatesQ_q_, which are solutions of dynamic equations irreducible zone as a wing, as executed by Ref. 10.
having a definite wave vectar.

Analogous to Eq(50), we have for the acceptor ion

1 —ig- 1 A
Q3=J—NR|ZP,H e ' TRaR(p)* WMpUa(Rip), - (46) <nﬂ|qs>A=ma2 ay’(an)* adp(ay) Je4 Rien,
. L 51
where N=number of cellss number ofqg in the Brillouin G
zone; VM u (R ,p) is the mass-weighted displacement co-Ifion 1 is identical to ion 2 and their sites are also equiva-
ordinate of atonp located at the R, +p) position, in which  lent, we have
R, is the representative position of thia primitive unit cell

and thep itself is used to identify the atom shifted Ipyfrom P(8n)=p(dn),  Ri(a)=Ry(dn)+R, (52)
the positionR, . The indexs is a shorthand symbol, analo- for the cased,=a,, so that we obtain an important relation
gous to Eq(45): for energy migration:

s=(ith,I",y) of group S(q), (47) (nBlas)a=(nBlgs)pe'® " (53

‘évzere :ré?nSpalffhgrouﬂg) E? S‘ibgrcﬁgp Offt[‘he Se;;;ghro“p VI. ELECTRON-PHONON COUPLING HAMILTONIAN
escribing all the symmetry properties ot the ¢ € AND ONE-PHONON-ASSISTED ENERGY TRANSFER

S .
group of the wave vectay. The actualQ, are also mixtures MATRIX ELEMENT BASED UPON THE LATTICE WAVE

of several symmetry-adapted cc')ordinat@%. of .the same MODEL OF PHONONS
type, andQg, can be obtained using the projection operators
of group S(q). Since the electron-phonon interaction is rather localized,

The transformation matrix thus obtained is complex uni-we may expand the electron-phonon coupling Hamiltonian
tary as shown in EqgB4) and(B5). By referring to Appen-  Hy(j) as
dix B 2, we may have, from Ed46),

th<1>=n25 f,5(D)Q™(D). (54)

1 ,
VMU, (R ,p)=—= >, €4 Righ :, 48
pUa(R1,P) \/qus o (P)Qq (48) Substituting Eq(49) into Eq. (54), we obtain
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where
Ho(1)=2) fos(D) X (nBlas)oQs. (55
" * fP= (1) =1"(2), g"¥=g"(1)=g"(2). (61)
Due to the well-known relatiofA7), Eq. (55) shows that
Hpn(1) contains phonon operat of all lattice waves via _
local site-symmetry displacement coordina@¥ related to B. Nondiagonal energy transfer process
them. The effective value of,,,;, may not be large since the From Egs.(55) and (A7) we have
operatorH ,(1) is localized(all the contributions from shells
with n>n,,, can be ignored Thus the adoption of the shell-

4+ *
vibration model introduces the ability to perform the step-by- (Lx:Nsq* L{Hpi(1)[ 1% nsg)

step calculation oH(1). [ /

We now considerr) the application of above results to the =2 gqﬁl*(nmiqs)D ZL‘ T/Sq—Jrl ,
theory of one-phonon assisted energy transfer. We consider ng “sq Nsq
both the diagonal energy transfer case, following the formal- (62)
ism of HLO? and the nondiagonal case developed above.

where
A. Diagonal energy transfer process
From Egs.(55) and (A7) we have AL(D)
4959 and (A7 917 =(Ldfrg(D)|1%)= > &Qn‘;(D (1,Dy(D)[17).

<:|-:nsqi 1| th(1)|1ynsq>

B N N h Vnggt1
—% f"%(1)(nB|=as)p \/qu[ g

p
(63)

' Similarly, we have analogous expressions for the electron-
phonon coupling coefficients” fgfz, andggfvzx. Thus,

(56) just as from the Eqg4)—(9), we obtain the expression of the
where transition matrix element for the (EQEDV) energy trans-
fP8(1)=(1|f,4(D)|1), (57)  ferinvolving a (s,q) phonon:
which can be calculated directly by E@C1), or by Eqgs.(C2)
and(C5), and the selection rule of point growpis directly nsGI
applicable. Similar to Eq(57), we may introducey™(1), i nsq V Zwsq (nBl=xas)p

f"%(2), andg"?(2), corresponding tg(1), f(2), andg(2),

respectively, of HLO theors. 311070 +194 31,10
Therefore, by referring to Eq$1)—(3), the (EQ—EQ,V) x> L o x
energy transfer matrix element is Ix —Eq,
_ J nsq Jz* ZXfZB,2+ 92* ZXJZ 2
tfi__AElJ e } N 200 2 {(nBl=as)p +(nB|+ qs)AE “E, .
X[fnﬁ(l)—gnﬁ(l)]—(nmiqS>A[f"B(2)—gnﬁ(2)]}- (64)
(58)

) o _ With the inclusion of Eq(53) we obtain
Introducing Eq.(53) for migration, we obtain

+1| VNggt+1
_AElz[ = } 2<nﬂ| as)a tfi:{ \/r:_Sq

nsq
x{[fnﬂ(l)—gnﬁ(l)]e“qR—[f”ﬁ(Z)—g”B(Z)]} [
X1 2
1)(

t=

h
E;ﬁ (nBl=qs)a

(59

so that we observe that the cancellation between the two
terms within the second set of curly parentheses still occurs,

Jl,&ngl* + fTiJlx,l*] iaR
e+ .

] . (65)

just as the case of HLO theory. Furthermore, + - “E,,
tfi=%[ r:/sr?_ﬂ \lzi It is important to observe that both of the signs inside the
12 sq @sq second curly parentheses are the same, so that the cancella-
o tion which occurs in the diagonal process is not present.
Xiz (nﬂ|iqS>A(an—9”B)}(e“q'R—l), Furthermore, for the case of energy migration, by using a
n.A similar discussion as in Eq$16)—(21) and (31)—(33), we
(60)  obtain
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/ns 1 % We also have the usual site point group selection rule for an
th= 3 —— > {(nBl=qs)a EDV transition: if we label the initial and final electronic
\ nsq 2a)sq n,g

crystal field levels of the donor or acceptor by the irréjjs

X([11n5.2* |Hpol[1* Tns. 2} (e719R+1), (66) andI¥, respectively, it is necessary that the direct product
I'?XT, contains an irrep in common with an irrep contained
in the direct productfx I'p for the phononQ"? creation

] process, for example.

where

[ Jl,ngrl]fl* + fgi‘]lx,l*

. Besides, th jecti fficier(ts 8| = qs) in Eq. (66
<[1]n3-2*|HDQ|[1 ]”B'2>:12X _ esides, the projection coefficientsg| +qgs) in Eq. (66)

of t;; contain selection rules, which can be obtained by a
similar method to that used in Ref. 13. However, instead of
starting from an entire irrep of the space grafiga linear
combination of whose basis components forms a standing
L wave), we should start from a “little irrep” of space grouf)
(102* TnglHool 1% [ 2]ns) i.e., from an irrep of they vector groupS(q), a basis com-

Lo AngltiQDIS wLEdns/ ponent of which is a running wave. That is, we should not

(67) multiply the character for a class of elements in grdiip)

by the numbek of wings in theq star{g} when we deter-
mine its character in the site group.

N

X X

in which the|[1*]nﬁ> is the first-order approximative wave
function of the initial state of the donor, corrected by the
coupling functionf,4(D) of Hy(1) in Eq. (54), which is
written as Eq(C1). The two elements in Eq67) can also be
approximately worked out by using Judd closure, as, for ex-

VIl. SINGLE-PHONON-ASSISTED ENERGY MIGRATION
RATE BASED UPON THE LATTICE WAVE MODEL

ample, we have We now consider the transfer rate for one-phonon-assisted
N . energy transfer, according to the diagonal and nondiagonal
([1]np:2 |HDQ|[1 Ing:2) processes. For simplicity, we only give the expression for the

lekggfl* +94 31 10
— E:L><

] energy migration rate.

1, A. Diagonal energy transfer process

e? The energy migration raté/ based upon Eq60) is
=7 2 Co,(0,0)
R, M% 27,
wzg1 — Itl?0(hwg= AEs)
x<2*|D&?|2>{2 (LU 1) (= 1)PF 02 +1)
Np

p+ay _ hrd? {n(|A|512|)+1Jz (P8 g
1 N t)H N IAL(D) - [AE5* [ N(JAEL) »
X E(tN) =g =
qi —(p+dy) P dQ"(D) sp" e s
in whi XD (JAED(FMF =g £)* ] (70)
in which

IAL(D) where D'ff,’ is the effective projected density of phonon

N ng —= P states:

AGLQY(D)]=E(tM) s (69

are considered as parameters, whose values can be obtained D25 (JAEy) =2 (nB|=as)a(=as|n’B')a

from the fitting of the EDV sideband intensities of transitions .

between the crystal field states of the donor, using the local- % 5(ﬁwsinElz)|eiiq-R_ 112, (71

ized phonon model foQ"2.1" For example, in the simplest _ _ _ .

case, under the,.—1 approximation, a moiety modg#f is I this equation, the function and the factofe™'%"—1|?

a linear combination of, 5 shell modesQ'#. If a rare-earth ~ describe the efficiency of thet(gs) lattice wave phonon in

ion is at an octahedral site, the most important terms in Eqgaccomplishing the energy transfer from the points of view of

(54) and (C1) of H,(1) are those witit=1, which corre- ~ €nergy conservation and coherence effects, respectively. The

spond to phonon®*# with g transforming as the,, irre-  fémaining two transformation matrices project the lattice

ducible representation of th®,, point group. Thus only the Wave into the shell vibration. Notice that the cqherence fac-

two t,,-type moiety-mode phonor@'# have nonzero coef- tor does not occur in the analogous quanﬁfiﬁ used in

ficients r?Arl,/(?Qlﬂ~aT and ag in Ref. 16. Under then,,x  Ref. 10 for vibronic band theory.

=2,3... approximations, the shell method of Chodos and We digress here, in order to make some comparisons of

Satted®8is used for the phonon modes. our results for diagonal energy transfer with those from HLO
The selection rules on total angular momentdrof the  theory, which is the only alternative theory of phonon-

relevant electronic transitions have been presented abovassisted energy transfer. It is evident from the above results
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that the coherence factor is the same as in HLO theory, so We now consider the phonon contribution from the view-
that the same cancellation occurs in the energy transfer ragint of the density of states, which is represented bydhe
expression. The energy transfer ratein Eq. (70) and the function in Egs.(70) and (71), and remark upon the impor-
fo,’ in Eq. (71) have contributions from all lattice waves tant differences from HLO theory. For exa_mple, flat o_ptical
(6. Since e are not dealing wih isotopi. conluousIENES, SUen near-0, have an appreciabie densiy of
media, the Debye-type dispersion relatianq=ws(q) These phonons can contribute to energy transfer processes

=v4|q| is only applicable to acoustic phonons with sniql) . . :
; L . : with large energy mismatch. However, optical phonons are
S0 that we require the entire dispersion relatiogea) for all not considered in HLO theory: especially for phonons with

sandq to be available to complete the summation ocvand .
5’ smallg, one-phonon energy transfer processes are not impor-

q in the definition ofD [, . tant because the density of states of Debye phonons is then
Without reference to the phonon dispersion curves of almost zeroas well as the almost zero coherence factor
specific system, we now give a general discussion of the Detailed total density of states information is only avail-
contributions of different lattice wave phonons to the energyable for metals and semiconductors. Considering this infor-
transfer process. Generally, the sum of the phonon modes ifation, then generally, compared with the Debye-type pho-
performed first oveéj, then overlg|, and finally overs, as  non model used in Ref. 2, there are more phonons in the

follows: region (0.4—0.6p,. [due to the flat parts of the curve
wta(q)], fewer phonons in the region (0.6—08)., [NO
density of states modes or only slanting parts«gfy(q)
> ()= [% > )“ thereir], and more phonons in the region (0.8— @), [due
4 s a | g to many flat parts ofv 5(q) and w1o(q)] which occur and

contribute to energy transfer. Few studies of the phonon den-

where for a certaing, we have aq star, {q} _sity ?g %a;ges are availaple for insulators containing rare earth
{0100, 0ar. }:{ﬁ AR R0, R ql. Here R are ions: V" The comparison of the phonon density of states

l,t 2 3’f " k tlll, 27 h? e {‘ ] data for CsUBrg with the Debye phonon model shows that
opgra ors of the crystaflographic poin 9“)‘%' among  there are considerably more phonons in the regions
whichR;=p can be any element of the point grolpq), all (0.1—0.3)01x, (0.38—0.450 15, and (0.92—1.0pay than
of which keepq=pqg=gq, invariant or equivalent. However, in the Debye model, but fewer phonons in the region
R, gives another wingor arm g,=R,0. Thekwings of the  (0.48—0.92) 1,2

q star,q;, have the same absolute vaILq;|=|I§jq|=|q1|

=|g| and have the same vibration frequenﬁ%qj: Wgq B. Nondiagonal energy transfer process
=---. Note that each lattice Wa\/@aj is a running wave, Based upon EC{GB), the energy transfer ral® is
thus being different from a standing wave which is a linear

combination of thek coordinate@éj related to gq}, used by We ha :n(IAE12|)+ 1

Satten for the description of vibronic transition bafds. |AE | n(JAEL])

However, since the different wings of{g} can make up the )

same energy mismatch, we perform the summation &yer X % [([11n:2* [Hool[1%1ns 2 NEE, (|AE L))

first. This summation, which is over thewings of a definite
g star, can be compared withtimes the “average over the
solid angleQ” of the squared strain tens¢Eg. (2.6)] and of X([1* 10 gr,2Hpol[ 110 7,2°)], (72)
the coherence factdEq. (2.18, etc] in HLO theory? No- here

tice, however, that our summation over wings is performedN

for the product of the coherence factor and the projection

n/ﬁ/

factors, and thdq} itself is q direction dependent. Second, NEE(|AE )=, (nBl=as)a(*as|n’ B')a
the summation ovelg| can contribute remarkably to the rate sq
W, for a few energy-suitable “flat” parts of the curves(q), « 5(hwsthE12)|eiiq.R+ 112 (73)

lying in high-symmetry directions, aroung=0, or on the
surface of the Brillouin zone. By contrast, in the Debye pho-is also an effective projected density of phonon states, which

non model, all phonon propagation directions are equivalengiffers from fo’ only by the coherence factor, as we

and the dispersion relation is simplys(q) =v|q|. Finally, pointed out previously. Notice that the factbfAE ;| in Eq.
the summation over different branchesm Eq. (71) consid-

L : ; 70) has its appropriate formJ¢, or J; )/(—E;) con-
ers contributions from different branches of lattice waves.( ) pprop g’]x Lol ) 1X)

Our phonon modes have special symmetry properties inditained in the definition of Eq.(67) for the element

/ 2
cated by the symbols and g, pertinent to the anisotropic ([L1np:2"[Hogl[ 1* Jnrp1,2), S0 that the factof J/|AE ]

properties and to the crystal structure on an atomic scaléj,Oes not appear in EW)' but is present in Eq70). .
The above discussions concerning the sum ewaerdq in

which effects their contribution to energy transfer as shown 55" _ o5 _
in Egs. (66) and (67). However, only two transverse waves D;, are also applicable foN;, . The summation of all
and one longitudinal wave are introduced in HLO theory. phonon modes is first carried out over different wings of a
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star, then ovelg|, and finally over different branchesn Eq.  use localized mode modeléncluding the moiety-mode
(73). As mentioned above, flat parts of optical phonon dis-mode) to describe the relevant phonon involved. We notice
persion curves can make important contributions to the enthat (Rp+ R,) is quite large for theé= 1 dipole-phonor{say,
ergy transfer process. We emphasize that this also applies tg,) coupling involved in the nondiagonal energy transfer
points nearg=0, which is different from our discussion of process, as mentioned in Sec. V. Thus the running wave
nondiagonal energy transfer in Sec. IV, where we employednodel is more suitable for the nondiagonal process than the
the Debye phonon model in which the phonon density ofdiagonal process.
states neaq=0 is negligible. Noticeably, in contrast to the  Third, if the rare-earth donor and acceptor are doped im-
conclusions from HLO theory, both the density of states andurity ions, a lattice wave with definitg, must be scattered
the coherence factor allow one optical phoriemen withq by them, changing it to be an approximative lattice wave
=0) to make an important contribution to energy transferwithin a limited spatial domairii.e., a superposition of lat-
processes, for the nondiagonal case. tice waves withg's distributing around thejy). In this case,
Based upon the above approximation and treatment iif the donor-acceptor distand® is larger than the phonon
Sec. VI the calculation of the energy transfer rdfen Eq.  coherence length, the radius of the domain where the lat-
(72) becomes tractable if we have the solution of the latticetice wave(as a kind of collective descriptiprof the host
dynamic equations for all lattice waves. It is evident from  phonon is still valid, then the above coherence effect can also
Eq. (72) that the obtained value &¥ thus calculated may be be ignored.
very different from that obtained by the SOA or by only  Now we turn to the discussion of another related subject.
considering the contributions from moiety modes due to theThe “spectral overlap” approach has been extensively used
g-dependent coherence factor and transformation factors im the interpretation of energy transfer phenomena, and usu-
Eq. (73). ally no explanation is given as to why this approach can be
At this point, it is pertinent to make a discussion about theextended to phonon-assisted energy transfer processes, and
coherence factor. First, for a lattice wave with low-symmetryno attention has been paid to the difference between diagonal
g, the number of wings in théq!} is large. Especially, with  or nondiagonal processéét this stage it is pertinent to add
generalq (i.e., without any symmetry propentythe number a comment concerning the relationship between the “
of wings is the maximum, which equals the number of op-matrix element” approach described above and the SOA of
erators in point groups, (for example, 48 forO,). In this  Dexter for energy transfer processes, which involve nondi-
case, the summation over different wings ifghapproaches agonal phonons. For the case of a deenitted phonon-
the “average over the solid angle” in HLO theory, mentioned assisted nondiagonal (EBVYEQ) energy transfer process,
in Sec. VII A. Then the coherence factor becomes similar to the discussion in Eq$16)—(21), the matrix ele-
mentt;; in Eq. (66) can be written as

|eT!9' Rz 112=2(1F cosq-R)—2 1—Sian (74)
AT AT COSG R A TR tri=([1],Nsq* 1;2* [Hpgl[1*],neq32)
for diagonal[taking the negative sign in Eq74)] and non- +(1;[2%],ngq+ 1|Hgop|1%;[2],ngg) - (78

diagonal(taking the positive signprocesses. In this case, if

the donor-acceptor distance Therefore, the two terms of E78) correspond to the two

processes EDV-EQ and EQ-EDV, respectively, which are
shown in Fig. 4.

R=|R|>2L= = i.e. gR>1, (75 Following Dexter; we may first average|([1],n,
™ 9 +1;2%|Hpgl[1%1,ngy;2)|2, whereR contained in theéH pq
then the coherence term is assumed to vary its orientation continuously. Since this
average has nothing to do with the structure of the wave
_,singR function, so the inclusion of antiparity electronic staig
- gR - (76) needed for the nondiagonal process, and of phonon states

) |nsq+ 1), etc., needed for phonon assistance, do not change
In other words, the two running waves are no longer coherine' result shown in Eq(21) of Ref. 1. Second, we sum
ent, and the results are close to the usual treatment in wh|qla[1],nsq+1;2*|HDQ|[1*],nSq :2)|2 over all electronic

the Iocalizedl vibration mpdel is usually employed.' There-giates of the donor and acceptor, while taking as its av-
fore, from this point of view, the coherence effect is moreerage valuensq=(eﬁ‘“sq’kBT—1)‘1 at temperaturdl. Thus

remarkable for lattice waves with high-symmetyy : e ; ; .
Second, if the donor-acceptor distance we obtain a result similar to Dexter’s equati@®) (Ref. 1):

R>(Rp+ Ry), 77 {[1].ns g+ 1:2* [Hogl[ 11,05 6:2)[
which is the summation of the effective interaction radius of | ([1],Ng g+ 1] 1[1% 1,6 o) 21(2* |N,[2)[2,
Hpn(1) andH,,(2), respectively, then the overlap between (79

the excitation(or deexcitation regions of the lattice waves

created(or destroyeyl at the donor and acceptor does notwhererlzzieri is proportional to the electric dipole opera-
exist any more. Therefore, the coherence effect between ther of the donor ion, antl, is the electric quadrupole opera-
two running waves could be ignored. In this case, we mayor of the acceptor ion. This expression is the basis of the
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4 Energy

(3;::/3 - 4 } i q FIG. 4. Spectral overlap of rare-earth ion do-

——

nor and acceptor bands. The energy scale shows
the spectral overlap between the emission spec-
; trum of the donor and the absorption spectrum of
emission i absorption the acceptor ion. Vibronic bands are represented

: by broader spectral features than pure electronic
transitions. Solid lines represent E€EDV en-

; ergy transfer, while dashed lines represent EDV
S R : —EQ energy transfer.

Donor Acceptor

SOA of calculating the EDV-EQ energy transfer rate. Simi-especially the 4E;,)? dependence of the energy transfer
larly, the second term of E¢78) forms the basis of the SOA rate.
for EQ-EDV energy transfer, which for energy migration Second, the running lattice wavégi have been taken to
gives the same result as the SOA for EDV-EQ energy transdescribe phonons involved in the energy transfer process,
fer, according to Eqs(66) and (67). and this takes into account the anisotropic properties and
However, the complex squaté;|? in Eqg. (78) contains  crystal structure on the atomic scale. This phonon model is
contributions from the cross terms of EDV-EQ and EQ-EDV.even different from the one-site standing-wave model used
These are not contained in the above SOA results oby Satten and co-workers to account for features in vibronic
EDV-EQ and EQ-EDV transfer, and are represented by thgidebands, where a standing wave is a linear combination of
coherence terms ¢&*'9'R+1|% in Eq. (73). This shows that  running lattice waves. Since & electron-phonon coupling
in the spectral overlap approach the coherence termisas been considered to be localized, the local symmetric dis-

2 cosfl-R) are ignored in the following approximation: placement coordinate®"? of the shells of atoms have been
_ taken, shell by shell, to calculate the electron-phonon cou-
|e"19R+1|2=2(1+cosq-R)=2, (80 pling energy. Thereby, mechanisms have been formulated, in

which we find that the difference between the coherence ef-
so that this approximation underestimates the energy transfégcts of the diagonal and nondiagonal processes is still
rate W by about a factor of 2 for the case gf R<1. A present, just as our above observation based upon the Debye
similar consideration may apply to (EBYED) nondiago- treatment of phonons. However, since the dispersion relation
nal energy transfer between a donor and acceptor located ina@(q) is not of the Debye type, the contributions from flat
noncentrosymmetric crystal field. Therefore, besides the alparts of the phonon dispersion curvése., from lattice
sence of the average over continuously varied orientations aflaves with high-symmetryq) are emphasized, especially
R (as it should be in a one- or two-dimensional system, othat one optical phonofeven withq=0) makes an impor-
for one- or two-dimensional directional energy transféie  tant contribution to nondiagonal processes. This contrasts
t-matrix approach has additional contributions from thewith the conclusions of HLO theory. We have also included
above cross terms if the phonon coupling occurs both at therief discussions about the simplification of the application
donor and acceptor positions. However, even these additionatethod of the theory, the selection rules, and coherence ef-
terms are much too small to solve the discrepancy betweefects. In addition, the relationship between the widely used
the results from a spectral overlap calculation andspectral overlap model and thenatrix approach for nondi-
experiment° agonal phonon-assisted energy transfer has been examined.

Finally, we provide a brief comment upon the relative
importance of various one-phonon-assisted processes, in a
general sense. For centrosymmetric systems, the HLO theory

A theoretical framework and the method of application ofis only applicable to the diagonal second-order (ERQ,V)
phonon-assisted energy transfer between rare-earth ions pfocesses, and not to the nondiagonal second-order
the fN electronic configuration in crystals has been presenteEQ—EDV) processes, while the (EBEDV) processes
in this study. We have focused upon diagonal and nondiagaare forbidden. Indeed, in some studies, the distinction has not
nal single-phonon-assisted processes and have emphasidegkn clarified between the diagonal and nondiagonal
the differences that occur. processes.

First, following the HLO theory, in which the Debye If there is no inversion center, the diagonal (EEQ,V)
model of a phonon is used, we have shown that for a nondienergy transfer process is about 10 times slower than the
agonal one-phonon-assisted energy transfer process, the abiagonal (EB-ED,V) process, from the following argu-
herent cancellations, such as those occurring in the diagonaient. UsingW and P to represent the energy transfer rate
process, are not present. Thereby, we have formulated arahd single-center transition oscillator strength, respectively,
discussed the transition element and transition rate for thBextet has given the following relation:
nondiagonal process, compared the related results with the )
ones of the diagonal process, and pointed out the effect of an Wop  Po ( R

VIIl. CONCLUSIONS

acoustic phonon with smalj to the nondiagonal process, Wpho Pg

NE G
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whereRis the donor-acceptor distance, and the radiation We define the strain tensor

wavelength. For rare-earth ions at noncentrosymmetric sites

of crystals, typicallj* Pp/Po~10" and (R/\)?~10"5, u(R) 1 . .

so that Wpp/Wpo~10. However, the nondiagonal &qp(R)= T:SE WQQGQ(—I%)G AR
(ED—EDV) process is also important, siféé!-23 b & (Ad)

Ppy/Pp~10 810 6~1072, but diagonal (EB-ED,V)
energy transfer is already a one-order-higher process than thiéhere o, 8=x,y,z, and we omit the dependence upon the
nondiagonal (EB-EDV) process. Therefore our theory and direction ofq by writing
results also make sense to rare-earth ions at noncentrosym- < <
metric sites of crystals. €,= () q- (A5)
In this study we havg developed a framework for theBased upon the isotropic properties, we have
study of one-phonon-assisted energy transfer processes be-
tween rare-earth ions in solids which is significantly different
from previous models. The same arguments can be followed gqap(R)= E[SQB(R)‘FSBQ(R)]. (AB)
to extend the model to two-phonon-assisted nondiagonal,

i.e., (EDV—=EDV), or to one-phonon-assisted nondiagonalye aiso expres®? in phonon-number representation:
(EDV+ MD) energy transfer processes, and since this exten- a

sion is straightforward, we do not present the results. We are 7
now considering the application of our results to a model ng P (
s.q

agt+a’,), (A7)
experimental system.

where the creation operateé+ is for g, while the destruc-
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APPENDIX A: ELECTRON-PHONON COUPLING
WITHIN THE DEBYE MODEL which is almost the same as formul2.5) of Ref. 2,

The HLO model of diagonal energy transfer utilized the €<CePt() fsor thesfactor (1), which makes the quantity
Debye phonon model under the isotropic approximationl(~1)/21(€,ds+€30.) for a certaing to be the complex
Here we follow this model and provide some derivations toconjugate of that for € g), to guarantee that,(R) is real,
present the detailed expressions of the relevant electror@nd(ii) the phase factoe™'9'R, which occurs in Eq(2.4) of
phonon coupling parameters. We understand that the HLdRef. 2. ) ) .
model considers a crystal to be a continuous isotropic me- NOw we introduce the localized electron-phonon coupling
dium, so that the details of its structure on the atomic scalél@miltonianHg(j) within this model:
and of the anisotropy are ignored.

Under the Debye phonon model, the displacement of ion : :2 IHA(R;) A
. . . . th(]) ] Saﬁ(R])i (Ag)
from its equilibrium positionR; can be written as ap 98 4p5(R})
1 whereH «(R;) is the crystal field energy operator for rare-
u(R)) =2, ——=Q5ege IR (A1)  earth ionj.
G UNM o Following HLO? we approximate the tenser,; by its

whereN andM are the number of lattice sites and mass of®" 'a9€ value over the solid anglé):

the ion, respectivelyea is the real polarization unit vector of (—i)
the phonon mods, g, which only depends upon the direc- <’T(e§;qﬁ+ e}qa)
tion of the phonon wave vectaq and the three different

types of polarization indes (corresponding to one longitu-
dinal and two transverse modeQz is the corresponding
normal coordinate. Since is real, we have the relations

2
> =ad?, (A10)
Q

where ag is a quantity of order of magnitude 1. Then Eq.
(A9) becomes Eq(10), while the averaged strain is given by

. fiasq2 )
s _NS ) — st S+ S —igq-R;
Q=Q5 . (A2) e(R)) g [ZNMwsyq (a5 +a® Je IR,
if we choose (A11)
< . o Thus from Eqs(11) and (12), and utilizing the matrix ele-
€=~ - (A3)  ment ofe from the HLO treatmert,
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2 APPENDIX B: THE SHELL MODEL AND THE LATTICE
hag \/nsq-l- 1
(ngq*1le|ng )= TMNo— : , WAVE MODEL OF PHONONS
@s.q Ns.a AND THEIR RELATIONSHIP

(A12)

we obtain the expressidi3) for g(j) in Eq.(12) used in the
HLO theory and similarly Eq(14) for f(j).

Furthermore, we write the crystal field energy operator as
follows: % a2ﬁ<dn>*a2€<d;>=§ ay’(dn)ar(dy) = 8q g Suar -

(B1)

1. For the shell model, the transformation matf(d,)
in Eq. (44) is orthogonal(real unitary:

Ho(R) =2 ANR)DKr())], k=246, (AL3)
k.q and

whereq is the index of a component of theh-rank tensor , ,
Dy ; AN(R)) are the crystal field parameters of the rare-earth dE a’(d,)*apf (dn):dE ay’(dy) apf (dn) =8,
ion j, and the electronic operator is given by n n (B2)

so we obtain from them and E¢4)

4
DYr(NI=3 rich(i=\57 > rYs(bre0),

(A14) WMoua(dy) =2 alf(d))Q™(D). (B3)
in which the summation goes over allf electrons of the g
rare-earth iorj, so thatD{[r(j)] is the quadrupole operator, 2 The normal coordinates of lattice wav@j are defined
etc. Then we are able to write more detailed expressions fqf, £qs.(46) and(47). Note that wherg is not on the surface
Hor(3), g(i), etc.: of the Brillouin zone, the irrefs of the space group(q) in
AR Eq. (47) can be represented instead by the irrep of the point
. k j . i i
Hon(]) = E ag(R; s(Rj)Dg[r(J ), (A15) groupP(q) of the wave vectoq, which is a subgroup of the
i

kg crystallographic point groug, and is isomorphic to the fac-
tor groupS(q)/Z(1) of the space grous(q), with respect to

(QAE(RJ.) its translation subgrouf(l).
g(j)=k2 W(WDSU(])]H*), (A16) The transformation matrix in Eq46) is complex unitary:
.q j
. IAIR) 2 al¥(p)*al™(p') = Spur Sppr » (B4)
f()=2 Zor) (IDArOID.  (A17) s
where > a%(p)*a® (p)=dss - (B5)
ap
IALR)) IALR)) 1

«8(R}) (A18) From Egs. (46) and (B4) and noticing %e*iQ-(RpRm)

= —= ) . S
(98(Rj) ap (98aB(Rj) S(Rj) :N5R|Rma we obtain Eq(48).
is a derivative averaged over solid angles. 3. We now observe that a certain atom can be identified by
Now it is possible to write the coupling parameters in (Ri+dn) Or (Ry*ay), and also by R, +p). Itis not diffi-
Egs. (6) and (8) for the nondiagonal (EQ-EDV) energy cult to establish the following relations:
transfer process as follows:

Ri=R(dp) or Ri(a,), (B6)
JIAP(R,)

91X,1*=§p ﬁ}(lxlD},[r(l)]ll*% (A19) p=p(d,) or p(a,). (B7)
Substituting Eq.(48) and Eqs.(B6) and (B7) into Eq. (44)

IAP(Ry) . we obtain

fo= 2 | Go(my |(2IDHI2112), (A20
ng_ ng *
and so on, where=1, 3, 5, 7 are odd numbers abg[ r(1)] Q d% 8 (dn)* VMg [Ri(d) ()],

is the dipole operator of ion 1, etc., since the parity of the
virtual intermediate statgd,) or |2,) is opposite to that of

the fN-electron state$1*) or |2), etc. The coupling coeffi- L >, alf(dy)*a¥p(d,) e REIQS, (B
cients, like in Eq.(A18), are key factors for estimating the YN d

values of theg's andf's coupling parameters in Eq§A16), s

(A17), (A19) and (A20). and therefore obtain E@49).
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APPENDIX C: ELECTRON-PHONON COUPLING ,
WITHIN THE SHELL MODEL He(Ry) = 2 V(dp), (C4
AND THE LATTICE WAVE MODEL n

1. The localized electron-phonon coupling HamiltonianwhereX=’ means thaw/(dp) is not included. Therefore, we
Hon(1) is expanded in E¢54) by means of the shell model, have
in which the expansion coefficientg;(D) can be written as

dH(Ry)  aV(dy)
D,(D). (CY) dU,(dn)  du,(dy)’

JH(Ry)  9ALD) (C5)

f06(D) = 50m(D) = 2 70™(D)

In the second step of EC1), Hy(R,) has been expressed which permits the calcqlation of thig 5(D) in Egs.(C2) and
using a crystal field model, like chjA13) whereA! p(D) are (55), and of theH (1) in Eq. (C3).

| field ol (D | ltinol Furthermore, based on E(C5), we may make Eq(C3)
crystal field parameters aridl,(D) are electronic multipole more simple. Notice tha¥(d,) is the interaction energy be-
operators of the donor ion. The indeéx1,2,3...,7;p=t,t tween atomd, and rare-earth iod,, so that!
—1,...~t; and the shell number=0,1,2....

2. It is not difficult to derive another expressions for the
coupling coefficientf (D) as follows: oVv(dp) av(d,)

U(do) Ul (€
¢ D IH(Ry) IH(Ry) du,(dy)
na(D)= JQ"(D) & dug(d,) dQ"(D) Thus we can write the terms with=0 in Eq. (54), by re-
ferring to Egs.(C2), (44), (B1), and(C4):
H(Ry) alf(d
_ 2 cf( 1) ( n)7 (CZ)
dy,a 0ua(dn) \ Mn 2 08
fog(D D
where Eq.(B3) has been used. B 0s(B)Q(D)
Furthermore, by substituting Eq&0) and (C2) into Eq. JH(Ry) a%(dy)
(55), and using Eq(B1), we have — ch 1 0 0B (g )* )
313 @ ) S e
IH(Ry)] a3f(dy) IH«(Ry)
H.(1)= _ el
D=2 2 | Gdy | =2 G0, el
: o1 , dV(dy)
% né dr * 0S| d/ iq-Ri(d)oS___ — u, d
2 dE 2l (dh agp(dh Je' MW QG 2 LE ﬁua(do)} (do)
, ovV(d
S chf(Rl)} 1 =33 ((d”))[ Uy(do)]. (€7
~ dn n 8ua(d ) ’_NMn 4% dn a
_ Similarly
x 2, a¥lp(d,)Je' T RQs. (C3)
q,s
This equation presents a direct way to calculate the coupling f (D)O"8(D)= IV(dy) d
energy of all lattice wave®y via the respective vibrations of n(z'l) EB ns(D)Q™(D) n;) Ea du,(d,) Ul o).

all shell atomsd,, participating in the movements of these (C8

lattice waves(we still can ignore all shell atoms with

>npna)- Note that the local site-symmetry displacementsso that Eq(54) becomes

Q"? are omitted so that the irrep symb@ of group G

thereby disappears. However, if we use the electronic opera-

tor f,,5(D) instead of[ dH(R;)/du,(d,)], it is easier to th(1)=2 an(D)QnB(D)

discuss the selection rule of the pertinent electronic transi- ap

tion, since the electronic states are bases of the e

Eq. (45)] of the rare-earth site symmetry point grodp - 9V(dn)
3. In order to calculate the electronic operator n(=1) doe U4(dp)

[0H(R1)/du,(d,)] in Egs.(C3) and(C2), we may expand

the crystal field energil «(R4) of the donor as a sum of the which is decided by the relative displacemdni,(d,)

interaction energie¥/(d,) between each shell atonh, (n —u,(dg)], as it should be. EquatiofC9) provides a direct

#0) and thefN electrons of the donor iod,: way to calculateH ,(1) from atomic displacements.

[Ua(dn) —Uu(do)], (C9)
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