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A theory of multiphonon relaxation for rare-earth ions in ionic crystals and glasses is pre- 
sented. The theory is based on the static coupling scheme. The electron-vibration coupling is 
assumed to be linear with respect to the relative ligand rare-earth displacements. The multi- 
phonon transitions are induced by higher-order lattice anharmonicity of the ionic motions. 
The probability of multiphonon transitions could be related to the IR multiphonon spectrum. 
A simplified form of the general expression is proposed. The electronic part of the expression 
obtained has exactly the same form as the corresponding expression in the well-known Judd- 
Ofelt theory for optical transitions between multiplets of rare-earth ions in solids. 

1. Introduction 
The majority of excited states of rare-earth (RE) ions 

in solids and liquids loses its energy by non-radiative 
processes. Therefore, the interest in explaining these 
processes has a long tradition. From a physical point 
of view it has been clear that the energy has to be trans- 
ferred from the ions to the lattice vibrations by Cou- 
lomb interactions. A theory for energy transfer 
between electronic donors and acceptors by electric mul- 
tipole interactions has been developed by Forster [l] and 
Dexter [2]. So, it was a challenge to apply this theory to 
non-radiative transitions by considering the RE ions as 
donors and the lattice vibrations as acceptors. The first 
attempt for such an explanation was done for the non- 
radiative transition 'D, + 'Do in E u ( C ~ H ~ S O ~ ) ~ . ~ H , O  
[3]. It was assumed that the electronic energy is trans- 
ferred by an inductive resonance process to the nine 
water molecules surrounding the Eu3+ ion. The electric 
dipole-quadrupole interaction between the dipole 
moment of the water vibrations and the crystal-field 
induced quadrupole moment of the Eu3+ 'D1 + 'Do 
transition was taken as the mechanism. Using only spec- 
troscopic data excellent agreement between theory 
(1 5 ps) and experiment (20 ps) was found for the lifetime 
of the 'Dl state. Furthermore, it could be shown experi- 

* Author for correspondence. e-mail: heber@hrzpub.tu- 
darmstadt.de 

mentally for a number of hydrated salts of E u ~ +  and 
Tb3+ that the non-radiative transition probabilities 
from the levels 'Do (Eu3+) and 'D4 (Tb3+) can be split 
up into a factor depending only on the RE ion and a 
factor depending only on the lattice. 

The idea to use the Forster-Dexter theory to explain 
non-radiative transitions was extended to multiphonon 
transitions on the basis of electric dipole-dipole inter- 
actions between the ions and overtones of the anhar- 
monic lattice vibrations [4-91. In this model the non- 
radiative transition probability separates into an ion 
and lattice factor. From the fact that the lattice factor 
depends on the overtone dipole moments, it follows that 
the non-radiative transition probability and the absorp- 
tion coefficient of the lattice are proportional one to 
another as a function of energy [6, 91. The absorption 
coefficient of the overtones decreases exponentially with 
energy [lo, 113. On this basis the model can furthermore 
explain the well-known exponential energy-gap law for 
multiphonon transitions [6, 91. This law has been nicely 
demonstrated experimentally in a number of papers [ 12- 
161. Although the model has a phenomenological char- 
acter, it can explain a number of aspects of non-radia- 
tive transitions quite well, qualitatively as well as 
quantitatively. 

More fundamental microscopic theories of multi- 
phonon relaxation, used first in harmonic approxima- 
tion, were extended to anharmonic vibrations [ 17-19]. 
It was demonstrated that the anharmonicity of the 
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1002 K. K. Pukhov et al. 

vibrations plays a crucial role in these theories too. 
However, numerical results can only be given under 
the quite simplifying assumption that the electronic exci- 
tation energy is only transferred to the vibration of one 
chemical bond. 

Here we extend the microscopic theory of multi- 
phonon transitions worked out in (20-221 to anhar- 
monic vibrations. We will show that the multiphonon 
relaxation rate W ( 0 )  and the infrared absorption coeffi- 
cient k ( 0 )  are proportional to each other as in the above 
mentioned Forster-Dexter dipole-dipole energy- 
transfer model. The paper is organized as follows. In 
section 2 we give general expressions for the non-radia- 
tive transition rates in the case of linear electron-vibra- 
tion coupling. In section 3 we will show that W ( 0 )  is 
proportional to k ( 0 )  and give the expression for the 
coefficient of proportionality. Section 4 is dedicated to 
the discussion of our results in comparison with pre- 
vious theories. 

2. General expressions for non-radiative transition rate 
In this section we will give general expressions for 

non-radiative transition rates in the case of linear elec- 
tron-vibration coupling. The theory is based on the 
static coupling scheme [23-271, zero electron-phonon 
Huang-Rhys parameter and the crystal-field approxi- 
mation for the Stark splitting of the free-ion states. 

In order to proceed with the calculation of the multi- 
phonon relaxation rate we will use the ‘exchange-charge’ 
model [28] of the crystal field. In this model the crystal 
field is considered as 

H = H M  + H E ,  (1) 

where HM is the Coulomb interaction of the 4f electrons 
with the field of the point charges (Ifpc) and that of the 
dipole moments (Hd) of the ligands. The non-Coulomb 
Hamiltonian is given by 

Here is the instantaneous radius vector of the ath 
4f electron relative to the nucleus of the rare-earth 
ion; rS = RS + us is the instantaneous radius vector of 
the Sth ligand relative to the nucleus of the rare-earth 
ion and Rs is the equilibrium radius vector. The non- 
Coulomb Hamiltonian deals with interactions which are 
mainly due to the overlap of the 4f electron wave func- 
tions with the ligand wave functions and includes the 
corrections to the Coulomb interaction resulting from 
the spatial distribution of the ligand electronic charge 
and the exchange interaction. The contributions from 
the charge transfer states are also included in HE. In 
equation (2) 

= 8*e2 (G,JS,~2+G,IS,JZ+~~G,1S,(2) / 7 r .  (3) 

Here e is the electron charge, G, are the crystal-field 
fitting parameters in the frame of the ‘exchange- 
charge’ model, and Yk = 2 - k(k + l ) / l2 .  s, = 
s”, exp ( - a , r )  are the overlap integrals of the 
4f electron wave functions with the wave functions of 
the external electronic shells of the ligands. For import- 
ant practical cases (oxygen and fluorine ions sur- 
rounding the RE3+ ions) these are the p o ,  pr and s 
orbitals of the ligands. 

We have already used this model and the correlation 
function method to calculate the multiphonon transition 
rates in the harmonic approximation [20-22, 29-3 11. 

In first-order perturbation theory the probability for a 
non-radiative transition from an initial state l i )  with 
energy Ei to a final state V )  with energy Ef (Ei > E f )  
can be written as 

1 roo 

W .  d - - - I2 J exp (iSZft)(H$(t)Hj) dt. (4) 
h -02 

Here Rf = (Ei - Ef)/h, the symbol (...) denotes the 
average over the initial lattice vibrations, 
H’ = H - ( H ) ,  H k  = ( i lH’b) ,  and 

H > ( t )  = exp (iHLt/h)Hk exp (-iHLt/h)l ( 5 )  

where HL is the vibration Hamiltonian of the matrix. 

tonian H’ and probability W f  can be written as 
For the even harmonics of the crystal field the Hamil- 

S km a 

Following the Judd-Ofelt procedure [32, 331 we obtain 
the following expression for the mean value of W f  
averaged over all Stark states of initial J and final J’ 
multiplets 

exp ( i0 f t )  C ( B z ( t ) B g ) * )  dt/47rh2, (8) 
SS’ 

where 
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Multiphonon relaxation of excited rare-earth ions in ionic matrices 1003 

and (JJJU(k)JJJ’) is the reduced matrix element of the unit 
tensor operator U ( k )  of rank k ,  [XI = 2x + 1 and I = 3 
for 4f-electrons. 

For the odd harmonics Y1,(<) of the point-charge 
field the Hamiltonian H’ and probability W f  can be 
written as 

S m  a 

where 

A l m  = ( 4 ~ / 3 ) e C  qSY;m(rs)/r;. (12) 
S 

In equation (12) qs is the effective charge of Sth ligand. 
In the following, the electron-vibration coupling H’ is 

assumed to be linear with respect to the relative ligand 
rare-earth displacements. This means that the multi- 
phonon relaxation is due to the anharmonicity of the 
lattice vibrations. (In the Appendix we discuss 
equation (1 1) also for nonlinear interaction). Averaged 
over all orientations of the vectors Rs the correlator ( A ~ ( ~ ) A E ! * )  is equal to 

(A12 ( t )  A:!*) = 87re2qsqs~ Ksst ( t)Sssdmmt /3R;Ri! ( 13)  

with the correlation function of the displacements 

Kss,(t)  = (US(t)US’)/3RSRS~. (14) 

Substituting (ArS,)(t)A\i!*) for (AK(t)A\:!*) in 
equation (1 1) and averaging over the Stark splittings 
leads to 

wYC = wlr = 2 C ( e q s / ~ ~ s ) ~ ( ~ J r / ~ s ) ~ s s  2 (1) (Q~)/[JI[J’I 
S 

(15) 

with the spectral density of the displacements 
m 

J t i ( s 2 )  = exp (iS2t)Kss(t) dt (16)  
-m 

and the optical line strength SJJ‘, which can be written, 
following Judd and Ofelt [32, 331, as 

With Rs = R and qs = q equation (15) can be rewritten 
as 

wP“( Q f )  = 2Z(eq/hR)2(  S J J J / R ~ ) J ( ’ )  (Qf)/[J] [.[’I. ( 18) 

Here R is the radius of the first coordination shell of the 
RE ion and Z is the coordination number. 

Under the same assumptions the contribution from 
the even harmonics of the point-charge field is [20, 211 

For the ‘exchange-charge’ model we have 

even k 

with 

/ \ 2 1  

’ 1  
Here biv = bkv(rS) are the parameters of the ‘exchange- 
charge’ field taken at the equilibrium distance 
rs = Rs = R and ru = 2a”R. 

It should be noted that for all considered cases the 
multiphonon transition rate W could be written as 

w = w : J ( ’ ) ( Q f ) ,  (23)  

where 

is the ‘electronic part’ and J ( ’ ) ( Q f )  is the ‘lattice part’. 
As can be seen from equations (23) and (24), the 

‘electronic part’ of all the expressions for the multi- 
phonon rates has the same form as the well-known 
Judd-Ofelt [32, 331 expression for radiative 4f + 4s 
transitions. 

In the harmonic approximation of the lattice vibra- 
tions, the spectral density 5(’)(Qg) will become zero if 
Qif exceeds the maximum frequency w,,, of the matrix 
vibrations. The same is true for the IR absorption coef- 
ficient k ( Q )  of ionic matrices. 
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1004 K. K. Pukhov et al. 

In the next section we will show that the spectral 
density J ( ’ ) ( Q )  and the IR absorption coefficient are 
proportional to each other. 

3. 

The IR absorption coefficient k ( Q )  of ionic matrices 

Relationship between the spectral density of the 
displacements and the IR absorption coefficient 

can be written as 

k ( Q )  =- 2*Qx r exp (iQt)(d(t)d) dt, (25)  3hcVn -M 

where Q is the frequency of the absorbed radiation, c is 
the light velocity, V and n are volume and index of 
refraction of the matrix, respectively, x = [(n2 + 2)/312 
and d(t) is the Heisenberg representation of the dipole 
moment d: 

IK 

I K  I‘d 

In equation (26) u ( k )  is the displacement of the Kth 
nucleus in the Ith unit cell from its equilibrium position. 
(We omitted a factor 1 - exp (-fiQ/kT) on the right side 
of equation (25), since hQ >> kT for multiphonon transi- 
tions.) 

We will not calculate the absorption coefficient k ( Q ) .  
Our objective is to connect the spectral density 
J_”, exp (iQt)(d(t)d) dt with the spectral density 
J ( ’ ) ( Q t f )  involved in equation (23) for the multiphonon 
relaxation rate W .  

We will neglect higher-order moments in 
equation (26). As noted in [l l] ,  the effect of higher- 
order moments is expected to be less important for 
highly ionic compounds since the constituent ions are 
generally less polarizable. For simplicity we assume 
that A I l 0 ( k )  = q(n)S,L(k, where q ( ~ )  is the effective 
charge of the Kth ion in the unit cell. Under this assump- 
tions, 

x ( ~ ( I K ;  r)u(I’d)) dt. (27)  

For reasons of mathematical convenience, we will 
choose the simplest lattice model, a diatomic ionic 
crystal of the NaCl structure. In this case equation (27) 
can be rewritten as 

N is the number of ions in the crystal and 

M 

j(IZ’; Q) = exp (iQt)K(ll’; t )  dt ( 2 9 )  
-M 

with 

K(II’; t )  = ([u(I+; t )  - u(l-; t)][u(I’+) - u(I’-)]). (30) 

In the following we assume that 
The sign denotes the charge of the corresponding ion. 

j(II’;Q) = j ( I1 ;Q)  if Ix(l) - x(l’)/ 5 R, (31) 

and 

j(II’; Q) = 0 if Ix(l) - x(I’)l > R,. (32 )  

In equations (31) and (32) x(1)  is the position vector of 
the Ith unit cell and R, designates a coherence length. R, 
is taken to be sufficiently short. (See section 4 for a more 
detailed discussion.) These assumptions give rise to 
higher-order harmonics at frequencies 52, which exceed 
significantly the maximum fundamental frequency LL,, ,~~ 

of the matrix vibration. With these assumptions 
equation (28) can be written in the form 

N N ,  R~ ~ 

k ( Q )  = J ( Q L  2ficnV (33) 

where N ,  is the number of ions in the volume 
V ,  = 47rR,3/3 and 

1=N/2 

J(a) = j ( U ;  Q ) / [ 3 R 2 ( N / 2 ) ] .  ( 34) 
I= 1 

In crystals J(n) = j (  11 ; Q ) / 3 R 2 ,  since the spectral den- 
sity j ( I I ;  R)  is independent of 1 cf. with equation (10) of 
[9]). In ionic glasses the sum d I y / 2 j ( 1 1 ;  Q ) / ( N / 2 )  is the 
mean value of the spectral density j ( I l ;  Q).  Taking into 
account that R is the distance between nearest ions and 
that the lattice constant a is equal to 2R,  we have 

where a = e2/fic is the fine structure constant. ~ 

Now let us compare the expressions for J ( Q )  and 
J ( ’ ) ( Q f ) .  According to equations (29), (30) and (34) 
we have 

00 I=N/2 

JO=/ exp(iQr) c ( [u(~+;t)-u(l-; t ) l  

x [u(l+) - u(l-)]) d t / [ 3 R 2 N / 2 ] .  

l‘= 1 -m 

(36) 

On the other hand, according to equations (1 4) and (1 6) 
we have 

W 

(37) 

with 

D
ow

nl
oa

de
d 

by
 [

T
he

 A
ga

 K
ha

n 
U

ni
ve

rs
ity

] 
at

 0
7:

50
 2

7 
O

ct
ob

er
 2

01
4 



Multiphonon relaxation of excited rare-earth ions in ionic matrices 1005 

K ( t )  = ([u(RE; t )  - u(L; t)][u(RE) - u(L)])/3R2, (38) 

where u(RE) and u(L) are the displacements of the RE 
and ligand ions, respectively. Note, that the RE ion 
charge is opposite in sign to the ligand one. Comparing 
the last three equations, one can expect that 

J(’)(SZ) = J(s2) (39) 

(40) 

y = 8nR/mxRN, (41) 

and as a result 
2- W = W ,  J(Q,) = wtyk(Q) 

with 

4. Discussion 
The total rate k,, of the multiphonon transition 

J + J’ is 

Y 

where pi is the population of the ith substate of the J 
multiplet. Substitution of expression (1 1) into 
equation (42) and using equation (40) leads to the 
expression 

where VR = 47rR3/3 and c e m ( X )  is the emission cross- 
section of the J + J’ transition. Payne and Bibeau (see 
equation (21) of [9]) derived a similar expression starting 
from the Forster-Dexter dipole-dipole energy-transfer 
model: 

From equations (43) and (44) we obtain 

As seen from equation (49,  the two differ5nt 
approaches give similar results. The factor (n’/x) in 
equation (45) arises because the Forster-Dexter theory 
supposes that the distance between the interacting 
dipoles is larger than the size of the dipoles. For this 
reason, in the Forster-Dexter theory the square of the 
matrix element of the dipop-dipole interaction is cor- 
rected by the factor ( x / n 2 )  due to polarization of the 
medium [9, 101. In our approach we do not need to 
introduce this factor, because there are no other ions 
between the RE ion and ligand. The authors of paper 
[9] suppose that Rmin is roughly equal to the RE ion 
radius. Since Z3/’Rmin M R, the main difference between 

equation (43) and equation (44) is the factor l /Nc in 
equation (43). Therefore the results obtained by the 
two methods are in close agreement if N, N 1. (In our 
model N, N 1 corresponds to a total breakdown of the 
correlation between the ion motions in different unit 
cells. Indeed, the approximation of completely uncorre- 
lated motion was used in [12] to explain the exponential 
dependence of the IR absorption coefficient on the light 
frequency. The authors used a gas of diatomic ions as 
model of an anharmonic crystal.) 

Although equations (43) and (44) are identical for 
N ,  N 1, one has to point out the completely different 
physical approach. In our model we do not have any 
energy transfer to more distant cells. The RE ion inter- 
acts only with its nearest ligands and does not transfer 
energy to distant neighbours. The similarity with the IR 
spectrum results from the fact that the charge of the RE 
ions is positive and that of the ligands negative. This 
way the RE-ligand cell has a dipole moment close to 
that of undoped cells (in the sense of the vibrational 
motion, correlation function and spectral density). For- 
mally this is demonstrated by equation (39). 

However, the multiphonon relaxation process may be 
interpreted in terms of the Forster-Dexter theory, if the 
crystal contains high-frequency quasi-molecular atomic 
groups, such as PO4, OH, H20 ,  etc., with strongly 
anharmonic vibrations. 

Finally, we would like to point out that from equa- 
tions (15) and (20) one can easily estimate the relative 
contributions of the crystal-field harmonics of second 
and first order, Y2,(<)and Yl,,,(<), to the relaxation pro- 
cess, i.e. the relative contributions of the ‘quadrupole- 
dipole’ and ‘dipole-dipole’ parts of the relaxation: 

This project was supported by DFG, A.Z. 436 RUS 
17/66/02, ISTC contract 2022p/EOARD 207042 and by 
RFBR grant No 00-02- 17 108a. 

Appendix 
The contribution of the odd harmonics YI,n(<) of the 

point-charge field in the harmonic approximation is 
given by 

eqs 2 (2n + 2)!SJJf 
hR 3!n!2”R2[J][J’] wyC(n)  = = z(-) J‘” ) (Q , ) ,  

where 
cx) Jg(l2) = J exp (iQt)Kg,(t) dt. (A 2) 
-cc 
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1006 Multiphonon relaxation of excited rare-earth ions in ionic matrices 

If a single frequency (wo) model of the lattice vibrations 
is employed, the probability of  a n-phonon transition 
between two multiplets J + J’ can  be expressed as 

(2n + 2)!SJJt 2 

wyC(n) = w 0 z  (z) n!R2[J][J’] ?7n’ ( ‘ 4 3 )  

The quantity 71 = ( u 2 ) / R 2  in equation ( A  3) is a par- 
ameter characterizing the dynamical properties of the 
lattice [20, 21, 29-31]. The term ( u 2 )  can roughly be 
estimated a s  fi/4Mwo, where M is the reduced mass of 
the ions involved, mainly the ligands. Hence, values of  7 
are expected in the region of 10-3-10-4. 
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