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Non-Radiative Processes in Crystals and in Nanocrystals
J. Collins∗,z
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This paper discusses non-radiative processes that are relevant to the luminescence characteristics of optically active ions doped into
insulators or large-gap semiconductors, with particular attention to how these processes are affected as the particle size is reduced
from bulk single crystals to as small as a few nanometers. The non-radiative processes discussed in this article are thermal line
broadening and thermal line shifting, relaxation via phonons between excited electronic states, vibronic emission and absorption,
and phonon-assisted energy transfer. Given that one of the main effects of confinement in these particles is on the phonon density of
states, we pay particular attention to how these non-radiative processes are altered due to the change in the phonon density of states
as particle size decreases.
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Inorganic insulators doped with rare-earth ions and transition metal
ions represent an important class of luminescent materials for many
applications, including phosphors for lighting, scintillators, solid-state
laser materials, bio-markers for imaging, and nanothermometry. Fol-
lowing excitation by radiation, the optical ions usually undergo some
degree of non-radiative relaxation releasing a part or all of its energy
to the lattice. During the non-radiative relaxation, all or part of the
electronic energy initially stored in the optically active ion is converted
into phonons.

From the perspective of energy efficiency of luminescent mate-
rials, it may seem beneficial to attempt to eliminate non-radiative
processes altogether. However, the conversion of electronic energy
into heat energy following excitation is, in fact, desirable to many
applications. Non-radiative processes play an important role in con-
verting light from the blue LED into red and green light for white
light generation in lamp phosphors, for efficient operation of many
solid-state lasers, for energy transfer and multiphonon relaxation in
bio-imaging, and also for the establishment of thermal equilibrium,
the principle on which thermometry is based. For these technologies
to be optimized, non-radiative processes must be controlled, or at least
carefully considered. Thus, understanding these processes is of great
interest to the luminescence community. The specific non-radiative
processes addressed in this work are thermal line broadening, thermal
line shifting, decay via a phonon from one electronic level to another,
vibronic transitions, and phonon-assisted energy transfer.

The main focus of this work is on how non-radiative processes are
affected as the particle size decreases into the nano-regime. Generally
speaking, the two main effects of going from the bulk to the nano are:
(1) an increase in the surface to volume ratio, and (2) a reduction in
the phonon density of states. Item (1) often leads to an increase in
defect sites (mostly near the surface) and surface states, which in turn
tends to decrease the luminescence efficiency as one goes from the
bulk to the nano. This nonradiative process is outside the scope of this
article. Item (2) on the other hand, is a theme that runs throughout
this work. Most non-radiative processes that play a significant role
in the luminescent properties of these systems involve phonons, and
most of those will be, at least in theory, affected by a change in the
phonon density of states of the lattice. One goal of this paper is to
present results that demonstrate how the reduced density of states in
nanoparticles affect the aforementioned processes, and under what
conditions will such affects be noticeable.

This work reviews some of the theoretical basis of non-radiative
transitions of optically active ions in solids, beginning with the
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electron-phonon coupling operator, which couples the electronic mo-
tion to the nuclear motion. The systems of primary interest in tis
paper are those in which this coupling is weak, such as f-f transitions
of rare earth ions and some sharp-line transitions in transition metal
ion-doped systems, such as the 2E to 4T2 transition in some Cr-doped
oxides.

Electron-Phonon Coupling

An optically active of ion embedded in a solid consists of two
subsystems: the electrons and the nuclei. Because the ratio of the
nuclear mass to the electronic mass is on the order of 105, the nuclei
move more slowly than the electrons by a factor of 10−2–10−3. Thus,
the electrons and the nuclei constitute a fast subsystem and a slow
subsystem, respectively. The formal separation of the electronic and
nuclear motions is called the adiabatic approximation, and results
in a wavefunction of the system that is a product of an electronic
wavefunction, φi (r, R), and the nuclear wavefunction, χi,k(R).

�i,k (r, R) = φi (r, R) χi,k (R) [1]

This is called a Born-Oppenheimer wavefunction. In Equation 1 r
represents the positions of the electrons, and R the nuclear positions.
Also, the electronic wavefunction φi (r, R), has only a parametric de-
pendence on R. Treatments in the literature on the adiabatic approxi-
mation as applied to molecules or to ions in a solid are plentiful, [e.g.
1 - 9], and so are not discussed here.

Writing the states in the form of Equation 1 is a result of ne-
glecting terms in the Hamiltonian that are responsible for coupling
the electronic and nuclear motions. These neglected (non-adiabatic)
terms form the electron-phonon coupling operators, which make pos-
sible non-radiative decay of an ion from an excited state. The two
most commonly used forms of the Adiabatic Approximation are the
Crude Adiabatic Approximation and the Born-Oppenheimer Adia-
batic Approximation. Each of these approximations has its own form
of the electron-phonon coupling operator, which are now separately
discussed.

Type A electron-phonon coupling.— In the Crude Adiabatic Ap-
proximation, the wavefunctions of an ion in a solid is given by

� (r, R) = φ0
k (r, R0) χk (R) [2]

where R0 are the nuclei positions fixed at their equilibrium positions
when the optically active ion is in its ground state. In arriving at
Equation 2, the interaction Hamiltonian between the electrons and
nuclei of the system is written in the following form:

U (r, R) = U (r, R0) + �U (r, R) [3]

http://jss.ecsdl.org/content/5/1.toc
http://creativecommons.org/licenses/by/4.0/
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Figure 1. Representation of a one-dimensional solid in the presence of a
longitudinal wave. Equilibrium positions of the atoms are given by the dashed
lines, separated by a distance a, and actual positions are labeled by xl. The sine
wave is a representation of the displacement of the ions from equilibrium as
a function of the horizontal position, with regions of tension and compression
indicated. In the long wavelength approximation, the strain in the lattice is
proportional to (ql+1 – ql). (Figure 3 is adapted from Reference 4).

where U (r, R0) is the potential energy of the systems with the nuclei
at fixed positions, and �U (r, R) takes into account the change in
potential energy of the system due to deviations of the nuclei from their
equilibrium positions. To find the electron-phonon coupling within the
Crude Adiabatic Approximation, we first write �U (r, R) in a more
useful form.

For the systems considered in this work, the wavefunctions of the
optically active ion are highly localized to the central ion, and so we
need concern ourselves mainly with the perturbation of the optically
active ion by the motion of the surrounding ions. When the optically
active ion is displaced from its equilibrium positions, the change in
energy is due only to a relative change in the distance between the
optically active ion and its neighbors. We denote the distance between
the optically active ion and its neighbor (labeled α) as Rion,α, and
the equilibrium distance between them as Rion,α,0. This change in
potential energy between the ion and its neighbors, which we write as
�Uion(r, R), can be expressed in terms of a Taylor expansion:

�Uion (r, R) = Uion (r, R) − Uion (r, R0)

=
∑

α

[
∂Uion

∂ Rα

]
0

(
Rion,α − Rion,α,0

) + 1

2

∑
α,β

[
∂2Uion

∂ Rion,β∂ Rion,α

]
0

× (
Rion,α − Rion,α,0

) (
Rion,α − Rion,β,0

) + . . .

= �U (1)
ion + �U (2)

ion + . . . [4]

where �U (1)
ion and �U (2)

ion are given by

�U (1)
ion =

∑
α

[
∂Uion

∂ Rα

]
0

(
Rion,α − Rion,α,0

)
[5]

�U (2)
ion = 1

2

∑
α,β

[
∂2Uion

∂ Rion,β∂ Rion,α

]
0

(
Rion,α − Rion,α,0

)(
Rion,α − Rion,β,0

)
[6]

In order to gain some physical insights into these terms, consider
the simple case of a linear solid, shown in Figure 1. The atoms are
separated from their neighbors by a distance a, and are free to vibrate
longitudinally. The displacement of the lth ion from its equilibrium
position is given by ql. In addition to the displacements, Figure 1 also
shows a representation of the longitudinal acoustic wave in the crystal.
In the long wavelength approximation, the strain, εl, at the lth site can
be written as:4

εl = ∂ql

∂x
≈ ql+1 − ql

a
= (xl+1 − xl ) − a

a
[7]

Thus, the strain is proportional to the change in distance between the
optically active ion and a neighboring ion. In the case of an ion in a
solid, (xl+1 − xl ) − a in 7 is replaced by Rion,α − Rion,α,0. Comparing
7 and 4, the change in potential energy experienced by the optically
active ion due to the displacements of the ions in the solid can be

written as the sum of powers of the strain.

�Uion (r, R) =
∑

α

V1,αεα +
∑

α

V2,αεα
2 + . . . [8]

For a linear system of like ions experiencing a longitudinal wave,
as shown in Figure 3, the form of the strain given in 7 is particu-
larly simple. For a three dimensional crystal consisting of different
ion types, transverse and longitudinal waves, and going beyond the
long wavelength limit, the situation is much more complex. We shall,
however, make the assumption that we can write the �Uion(r, R) in
the form given in 8.

Threating �U (1)
ion as a perturbation, the electronic wavefunction

corrected to the first order is:

φ
(1)
i (r, R)= φ0

i (r, R0) +
∑
j �=i

〈
φ0

j (r, R0)
∣∣∣�U (1)

ion

∣∣∣φ0
i (r, R0)

〉
ε j − εi

φ0
j (r, R0)

[9]
Thus, the first order corrected states in the Crude Adiabatic Approxi-
mation are:

�
(1)
i,k (r, R)

=
⎡
⎣φ0

i (r, R0)+
∑
j �=i

〈
φ0

j (r, R0)
∣∣∣�U (1)

ion

∣∣∣φ0
i (r, R0)

〉
ε j − εi

φ0
j (r, R0)

⎤
⎦χk (R)

[10]

The sum in 10 contains terms of the form
〈φ j (r, R0)|�U (1)

ion|φi (r, R0)〉, which mix the various electronic
states of the system, indicating that the displacements of the nuclei
from equilibrium cause transitions from one electronic state to
another. Thus, �U (1)

ion is an example of an electron-phonon coupling
operator. It is interesting to note that the wavefunctions in 10 are
the product of a purely electronic wavefunction, in brackets [ ], with
nuclear wavefunction. That is, when �U (1)

ion is used as a perturbation
to the electronic wavefunction only, it mixes various electronic states,
but does not couple the electronic wavefunction to the vibrational
wavefunction. The electronic and the nuclear states are not truly
coupled in the usual sense, and the corrected wavefunction 10 is
still considered “adiabatic”. This type of the coupling is known as
electron-phonon coupling of type A.6

Type B electron-phonon coupling.— In the Born Oppenheimer
Adiabatic Approximation, the states of the system are given by 1.
In arriving at Equation 1 as a solution to the Schrödinger Equation for
an ion in a solid, certain terms in the full Hamiltonian were ignored.
As shown any of References 1–9, these terms originate from the terms
in the full Hamiltonian associated with the kinetic energy of the nu-
clei. Specifically, operating on the Born-Oppenheimer wavefunction
(Equation 1) with the nuclear kinetic energy operator gives

− h̄2

2Mα

�∇2
αφ (r, R) χ (R) = − h̄2

2Mα

�∇α ·
[
�∇α (φχ)

]

= − h̄2

2Mα

�∇α ·
(
φ �∇αχ + χ �∇αφ

)

= − h̄2

2Mα

{
φ �∇2

αχ + χ �∇2
αφ + 2

(
�∇αφ

)
·
(

�∇αχ
)}

[11]

Because the last two terms in brackets {} on the right of Equation 11
contain derivatives of the electronic wavefunction with respect to the
nuclear coordinates, they couple the nuclear motion to the electronic
motion. We define a non-adiabatic Hamiltonian, HNA, by the last two
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terms in 11 in the following manner.

HN A�i,k (r, R) = −h̄2

2

∑
α

1

Mα

χi,k (R) �∇2
αφi (r, R)

−h̄2
∑

α

1

Mα

( �∇αφi (r, R)) · ( �∇αχi,k (R)) [12]

At this point, it is typical to assume that the first term on the right
in 12 is negligible compared with the second. Under that assumption,
12 becomes

H ′
N A�i,k(r, R) = −h̄2

∑
α

1

Mα

( �∇αφi (r, R)) · ( �∇αχi,k). [13]

Treating H ′
N A as a perturbation, the first order, non-adiabatic wave-

function is given by:

�
(1)
i,k (r, R) =

�i,k(r, R)−
∑
j �=i

∑
α

h̄2

Mα

〈� j,k(r, R)|(−→�∇ αφi (r, R))·(−→�∇ αχk,t )|�i,k(r, R)〉
E j − Ei

× � j,k(r, R) [14]

The wavefunction �
(1)
k in 14 cannot be expressed as a product of

an electronic wavefunction and a nuclear wavefunction, so it is a true
non-adiabatic wavefunction. H ′

N A is referred to as the electron-phonon
coupling of type B.6

Representation of Eigenstates and Operators

In order to apply the previous treatments to phonon-related pro-
cesses in solids, we must first represent the vibrational states of the lat-
tice and electron-phonon coupling operators in the appropriate forms.
To do so, we make the following assumptions:

1. The nuclei vibrate in a harmonic potential. In this so-called “har-
monic approximation”, each normal coordinates Qk, is associated
with the kth vibrational mode of the solid and oscillates with a
frequency ωk. Each mode acts as a harmonic oscillator, with the
excitation of the kth oscillator corresponding to the number of
phonons, nk, in that mode. The energy of the lattice is:

E = E0 +
∑

k

(
nk + 1

2

)
h̄ωk [15]

where E0 is the energy of the lattice with the nuclei at their
equilibrium positions.

2 The normal modes of the solid act independently, with no commu-
nication between them. In this assumption, the eigenstates of the
lattice vibrations, χ(Qk), are products of the states of the normal
modes:

χ (Qk) =
∏

k

| nk〉 = | n1〉 | n2〉 | n3〉 . . . | nk〉 . . . | n3N−6〉 ,

[16]
where N is the number of atoms in the solid.

It should be noted that neither of the assumptions above are strictly
valid. Experiments on phonon decay times have shown that phonons
generally do decay into other, lower energy modes [e.g. 10, 11]. Also,
the assumption of a harmonic approximation is only valid for very
small amplitudes of vibration. As the amplitudes increase (i.e., as
temperature increases), the restoring force becomes increasingly non-
linear. Frenkel noted early on that such non-linear effects cause a
breakdown of the adiabatic separation between the electronic and nu-
clear subsystems, thus allowing lattice vibrations to cause electronic
transitions.12 Despite these assumptions, working with the states as
described in 16 does lead to results that adequately explain the behav-
ior of many systems across a range of temperatures.

In order to make use of 16, the electron-phonon coupling operators
must be expressed in terms of the normal coordinates of the lattice.
For the electron-phonon coupling of type A, given in terms of the
strain operator in Equation 8, it is convenient to express the strain
in terms of the phonon annihilation and creation operators, a and
a†, respectively. We do not derive this expression here, but simply
present the result. The reader is referred to the text by Henderson and
Imbusch4 for details of the derivation.

Referring to the case of a linear solid shown in Figure 1, it can
be shown that the displacement of the lth ion from its equilibrium
position, ql, can be written in terms of the generalized position has the
following form:4

ql =
(

1

N

)1/2 ∑
k

Qkexp (−iκa) [17]

where a is the spacing between atoms, κ is the wave vector associated
with the kth mode, N is the number of atoms in the linear chain. Using
17, the local strain at the site of the lth ion, as approximated in 8, due to
the kth normal mode can be expressed in terms of ak anda†

k as follows:

εk = −i

(
h̄ωk

2M Nv2
k

)1/2

(a†
k − ak), [18]

where vk is the velocity of the sound associated with the kth mode.
Again, the reader is referred to Ref. 4 for the full derivation of 18. The
operator for the electron-phonon coupling of type A is obtained by
inserting 18 into the expansion similar to 8, except the sum is over all
the normal coordinates. Keeping only the first two terms, the result is:

�Uion ≈ �U (1)
ion + �U (2)

ion = V1,kεk + V2,kε
2
k [19]

Recall that 19 applies to a linear chain of atoms in the long wavelength
approximation. For practical reasons, however, it is usually assumed
that the simplified version of the strain operator in 18 has the same
form for all normal modes in a three-dimensional crystal.

The electron phonon coupling of type B is given by the non-
adiabatic Hamiltonian, H ′

N A, defined by Equation 13. To express 13
in terms of the normal coordinates, recall that ih̄ �∇α = �Pα. The kinetic
energy of the lattice in Cartesian coordinates and in normal coordinates
is:

TN =
∑

α

�P2
α

2Mα

=
∑

k

�P2
k

2Mk
= −h̄2

2

∑
k

1

Mk

(
∂

∂ Qk

)2

[20]

where the first sum is over all nuclei, the second and third sums are
over all normal modes, and the Mk are properly weighted masses.
Using the term on the far right in 20, and re-deriving Equation 13, it
is readily seen that the electron-phonon coupling operator of type B
operating on the adiabatic wavefunction of the system is expressed as:

H ′
N A�i (r, Q) = −h̄2

∑
k

1

Mk

(
∂φi (r, Q)

∂ Qk

)
·
(

∂χi, (Q)

∂ Qk

)
[21]

This is the operator representing the electron-phonon coupling of
type B written in terms of the normal coordinates of the lattice. We
note that calculating the first term in parentheses in 21 is very diffi-
cult, requiring detailed knowledge of the electronic wavefunction. On
the other hand, the last term in the sum in 21 is readily calculated
in the harmonic approximation, since it contains the first derivatives
of the standard harmonic oscillator wavefunctions. The matrix ele-
ments containing this term are frequently calculated in determining
non-radiative transition rates between electronic levels using a single
configurational coordinate model [13, 14 and references therein].

Thermal Broadening and Shifting of Sharp Spectral Lines

Thermal broadening of spectral lines.— The broadening of a spec-
tral line can be caused by several interactions, among which are the
following:
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1. Strain Broadening - These are site-to-site variations in the crys-
talline field at the ion due to strains in the crystal. This is a static
interaction and is present at even low temperatures.

2. Lifetime Broadening: This category includes all processes that af-
fect the lifetime (τ) of the ion in its excited state, thereby changing
the linewidth (�E) through the uncertainty relation: �Eτ ≥ h̄/
2. The processes are radiative decay, nonradiative decay, and vi-
bronic transitions. Even for allowed transitions, the broadening
due to this term is less than the strain broadening observed in
single crystals.

3. Direct processes: These processes involve a transition from one
level to another via the absorption or emission of a phonon. This
term has been found to be of secondary importance in most sys-
tems, and so will not be discussed here.

4. Raman Scattering: This occurs via the emission of a phonon
from one mode and the absorption of a phonon from a different
mode. The initial and final electronic states are the same, and
the intermediate electronic state is virtual. It is a second order
process, and is found to be the dominant contributor to the line
broadening in several systems [e.g. 15-18]. This process is shown
in Figure 2.

To investigate this interaction, we utilize the electron-phonon cou-
pling of type A, as given by Equations 18 and 19. Note that this form of
the adiabatic approximation utilized the Crude Adiabatic Approxima-
tion, and so is only valid for systems for which the relevant electronic
states have nearly the same equilibrium position. For more strongly
coupled systems, we refer readers to, for example, References 4 and
19.

For weak electron-phonon coupling, Equations 18 and 19 can be
used to determine the interaction term to the second order. The result
is:

�Uion ≈ �U (1)
ion + �U (2)

ion

= V1

∑
k

(
h̄ωk

2Mv2
)1/2(ak − a†

k)

+V2
h̄

2Mv2

∑
k

√
ωkωk′ (ak − a†

k)(ak′ − a†
k′ ) [22]

where we have assumed V1 and V2 are independent of the phonon
mode k. The states of the system are products of an electronic part
and a nuclear part.

|�〉 = |φ〉 ⊗ |n1n2n3 . . . nk . . .〉 = |φ, n1n2n3 . . . nk . . .〉 [23]

Since Raman scattering is a second order process, the contributing
terms derive from

1. the first order term in 22 with the first order correction to the
initial and final states, and

2. the second order term in 22 with the zeroth order states.

The relevant matrix element for the Raman process is:

〈� f

∣∣∣�Uion

∣∣∣ �i 〉 =
∑

j

〈
φ0

i , nk − 1, nk′ + 1
∣∣∣�U (1)

ion

∣∣∣φ0
j nk − 1, nk′

〉 〈
φ0

j , nk − 1, nk′
∣∣∣�U (1)

ion

∣∣∣φ0
i , nk, nk′

〉
εi − (

ε j −h̄ωk

)

+
∑

j

〈
φ0

i , nk − 1, nk′ + 1
∣∣∣�U (1)

ion

∣∣∣φ0
j nk − 1, nk′

〉 〈
φ0

j , nk, nk′ + 1
∣∣∣�U (1)

ion

∣∣∣φ0
i , nk, nk′

〉
εi − (

ε j −h̄ωk′
)

+
〈
φ0

i , nk − 1, nk′ + 1
∣∣∣�U (2)

ion

∣∣∣φ0
i , nk, nk′

〉
. [24]

Using 22 to replace for �U (1)
ion

) and �U (2)
ion in 24, recalling that

a|n〉 = √
n|n − 1〉 and a†|n〉 = √

n + 1|n + 1〉, and assuming that
h̄ωk,h̄ωk′ � ε j for all intermediate electronic states, j, 24 becomes:〈

� f |�Uion| �i 〉 = α′√ωkωk′ nk (nk′ + 1) [25]

where

α′ = h̄

Mv2

⎡
⎢⎣∑

j �=i

∣∣∣〈φ0
j |V1

∣∣∣φ0
i

〉∣∣∣2
εi − ε j

+
〈
φ0

i

∣∣∣V2|φ0
i

〉⎤⎥⎦ . [26]

The transition probability per unit time due to modes k and k′ is

(WRaman)kk′ = 2π

h̄2

∣∣α′∣∣2ωkωk′ nk (nk′ + 1) �
(
ω f

)
, [27]

where �(ω f ) represents the density of final states of the phonon field.
To find the total transition rate for these Raman processes, we must
integrate over all phonon modes k and k′. For sharp lines, where the
width of the line is much less than the Debye frequency, we estimate
�(ω f ) as

�(ω f ) � � (ωk) � (ωk′ ) δ (ωk − ωk′ ) dωkdωk′ = �2 (ωk) dωk . [28]

Inserting 28 into 27 and integrating over all phonon modes, we
obtain:

WRaman = 2π

h̄2

∣∣α′∣∣2 ∫ ω2n (n + 1) �2 (ω) dω [29]

Recalling the expression for the phonon occupation number of the
kth mode,

n = 1

eh̄ω/kT − 1
, [30]

the total transition probability becomes

WRaman = 2π

h̄2

∣∣α′∣∣2 ∫ ω2�2 (ω)
eh̄ω/kT(

eh̄ω/kT − 1
)2 dω. [31]

In the Debye approximation, �(ω) = 3V ω2/2π2v3
s , 31 takes the

following form:

WRaman = 2π

h̄2

∣∣α′∣∣2 9V 2

4π4v6
s

ωD∫
0

ω6eh̄ω/kT(
eh̄ω/kT − 1

)2 dω, [32]

where ωD is the Debye frequency. It is convenient to rewrite 32 in
terms of the unitless parameter x = h̄ω/kT and the Debye temperature
TD = h̄ωD . The result is:

WRaman = ᾱ

(
T

TD

)7
TD/T∫
0

x6ex

(ex − 1)2 dx . [33]

where ᾱ = 9V 2

2πh̄2 ( ωD
vs

)6|α′|2, and is referred to as the electron-phonon
coupling constant. The temperature dependence of 33 is contained in
the T7 term outside the integral and in the upper limit of the integral,
TD/T. In the limit as T→0, the upper limit goes to infinity, and the inte-
gral is simply a constant. Thus, the contribution of Raman processes to
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Figure 2. The Raman process: Both diagrams above show the absorption of
a phonon of frequency νk then the emission of a phonon of (frequencyνk′ . The
initial, intermediate and final states are indicated.

the linewidth goes as T7, which goes to zero as T→0, as expected. At
high temperatures (T � TD) we may use the approximation ex ∼ 1 +
x, so the integral goes roughly as x5, and the temperature dependence
goes as T2.

In many systems, the contribution of the Raman term at low tem-
peratures is much less than the residual linewidth, which is due to
inhomogeneous broadening by variations in the sites of the ions in the
lattice. In such systems, the linewidth is given by an equation of the
form [e.g. 15–17],

�ε = �ε0 + Ā
1

x7

x∫
0

x6ex

(ex − 1)2 dx, [34]

where �ε0 represents the residual linewidth and A is proportional to
the electron-phonon coupling constant. A graph of the function de-
scribed in 34 is shown in Figure 3 for various values of �ε0. The units
used are arbitrary, and the graph is simply intended to show the tem-
perature dependence of the thermal contribution to the linewidth. As
seen in Figure 3, at high temperatures the slope of the line approaches
−2, corresponding to a T2 dependence. Note that the slope is allowed
to have a Tn dependence where n is greater than 2, especially when
the residual linewidth is small.

Figure 3. Plot (solid lines) of Equation 34 vs. x relevant to the thermal broad-
ening of a spectral line for systems with three different values of the residual
linewidths. The variable x is related to temperature by x = h̄ω/kT , so temper-
ature increases to the left. Values of the residual linewidths, in arbitrary units,
are also shown. The dotted line shows a T2 dependence.

Figure 4. Log-log plot of the temperature dependence of the linewidth of the
2E→4A2 transition of V4+ in bulk MgO. The residual linewidth is on the order
of 0.45 cm−1, and the slope of a best fit line to the data at high temperatures is
∼2.2.16

Experimental results of linewidths of sharp lines in solids are
consistent with Equation 34.15–17 One example of this is the thermal
dependence of the linewidth of the 2E → 4A2 transition of V4+ in
MgO between 4 K and 460 K, as shown in Figure 4.16 The residual
linewidth of ∼.45 cm−1 is observed at low T, and a near constant slope
of ∼2 at T > 150 K. In that work, the best fit line to Equation 33 was
found for TD = 760 K and ᾱ = 377 cm−1.

Thermal shifting of spectral lines.— Any interaction of a system
an external agent will, in general, affect the energies of the states of the
system. Thus, we expect that phonons interacting with an ion in a solid
will shift the energy levels of the ion. As temperature increases, these
interactions also increase, leading to the so-called thermal shift of the
energy level. In a perturbation treatment, the change in energy the level
found in the diagonal matrix elements containing the Hamiltonian of
the perturbing interaction, i.e., matrix elements for which the initial
and final states of the system are unchanged. The contribution of the
electron-phonon interaction is a second-order effect, and so contains
the matrix element of �U (2)

ion between the zeroth order states, and of
�U (1)

ion between the first order states. The relevant Raman processes
involve the virtual absorption and emission of phonon of the same
frequency. The correction to the energy of the electronic state due to
the electron-phonon interaction is given by:

�εi,k = 〈φi , nk |�U (2)
ion|φi , nk〉

+
∑

j

〈φi , nk |�U (1)
ion|φ j nk − 1〉〈φ j,nk − 1|�U (1)

ion|φi , nk〉
εi − (ε j −h̄ωk′ )

+
∑

j

〈φi , nk |�U (1)
ion|φ j,nk + 1〉〈φ j,nk + 1|�U (1)

ion|φi , nk〉
εi − (ε j +h̄ωk)

[35]
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Using 49 and 50 to rewrite �U (1)
ion and �U (2)

ion in terms of the creation
and annihilation operators, and assuming that |εi − ε j | � h̄ωk , 35
becomes

�εi,k = h̄ω

Mv2
s

〈φi |V2|φi 〉〈nk |(a†
k ak + ak a†

k)|nk〉

+ h̄ωk

Mv2
s

∑
j

|〈φ j |V1|φ j 〉|2
εi − ε j

×
{ 〈nk |(ak − a†

k)|nk − 1〉〈nk − 1|(ak − a†
k)|nk〉

+〈nk |(ak − a†
k)|nk + 1〉〈nk + 1|ak − a†

k |nk〉

}

[36]

Using the identities a|n〉 = √
n|n − 1〉 and a†|n〉 = √

n + 1|n + 1〉,
36 reduces to

�εi,k = h̄

Mv2
s

⎡
⎣〈φi |V2|φi 〉 +

∑
j

∣∣〈φ j |V1|φ j

〉∣∣2
εi − ε j

⎤
⎦ωk (2nk + 1)

[37]
The thermal shift of the line is due only to the terms containing

nk . The total thermal shift is found by summing over all k. For large
particles, this sum can be approximated by an integral, so the total
shift is given by:

�εi = h̄

Mv2
s

⎡
⎣〈φi |V2|φi 〉 +

∑
j

|〈φ j |V1|φ j 〉|2
εi − ε j

⎤
⎦ 2

∫
ρ (ωk) ωknkdωk

[38]
Assuming the Debye distribution (�(ω) = 3V ω2/2π2v3

s ), using
the equilibrium value of nk as defined in 30, setting the upper limit of
the integral in 38 to the Debye frequency, and making the substitution
x = h̄ω/kT , the thermal shift of a an energy level becomes:

δEther = �V

TD/T∫
0

x3

ex − 1
dx [39]

where

�V = 2h̄

Mv2
s

(
kT

h̄

)4
⎡
⎣〈φi |V2|φi 〉 +

∑
j

∣∣〈φ j |V1|φ j 〉
∣∣2

εi − ε j

⎤
⎦ [40]

Experimental measurements of lineshifts involve transitions be-
tween two levels, so the measured lineshift is the difference between
the shifts of the initial and final energy levels of the transition. It is
generally assumed that the measured shift will follow the same tem-
perature dependence as in 39, though �V will be different than in 40.
Thus, the experimentally measured thermal shift of a spectral line will
be described by the following:

δEther = �V ′
TD/T∫
0

x3

ex − 1
dx [41]

The temperature dependence of the thermal shift of a spectral line
is determined by the T4 term contained in �V ′ and by the upper limit
of the integral. As T→0, the integral approaches a constant value, and
the line shift goes as T4. For large T, the integrand goes roughly as x2,
the integral goes as T−3, and so the line shift is linear with T.

An example of this lineshift can also be found in the work by Di
Bartolo et al.,16 who measured the shift of the 2E → 4A2 transition of
V4+ in MgO between 77 and 450 K, shown in Figure 5. The data in
Figure 5 show a decreasing slope as temperature increases, changing
from T3 at low temperatures to ∼T1.5 at higher temperatures, which
is consistent with Equation 41.

Figure 5. Log-log plot of the temperature dependence of the line shift of
the 2E→4A2 transition of V4+ in bulk MgO.16 The temperature dependence
is ∼T3.5 and low temperature and T1.2 at high temperature, consistent with
Equation 39.

The Phonon Density of States in Nanoparticles

To examine the phonon density of states (DOS) of a nanoparticle,
we consider a cubic solid with side length L and atomic spacing a.
The allowed standing waves in the crystal have wavelengths 2L/n,
where,n = (n2

x + n2
y + n2

z )1/2, and nx, ny, nz are integers ranging from
1 to L/a. These wavelengths correspond to resonances in the crystal
and determine its phonon modes. The energy of a phonon in such a
solid is given by

εph = hvs

λ
= hvs

2L
n, [42]

where vs is the velocity of sound in the crystal. Note that the maximum
phonon energy (when n = √

3L/a) is determined by the interatomic
spacing, and so is independent of the particle size, while the low
frequency phonons increase in energy as particle size decreases. Con-
sequently, many low frequency phonon modes that exist in the bulk
are no longer supported in a nanoparticle.

The phonon DOS of cubic nanoparticles 15 × 15 × 15 atoms
(L∼3 nm), 25 × 25 × 25 atoms (L∼5 nm), and 250 × 250 × 250
atoms (L∼50 nm) have been calculated using the speed of sound equal
to 3400 m/s and an interatomic spacing of 0.2 nm. The modes were
accumulated in 1000 bins, each approximately 0.5 cm−1 in width. The
results are shown in Figure 6. We note the following:
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Figure 6. The phonon density of states vs. phonon energy of cubic nanopar-
ticles with 250 × 250 × 250 atoms, 25 × 25 × 25 atoms, and 15 × 15 × 15
atoms. The velocity of sound was set to 3400 m/s.

1. For the 250 × 250 × 250 atoms system, the phonon DOS exhibits
an ε2 dependence, as expected from the Debye theory, out to
a frequency at which the DOS reaches a maximum. At higher
energies, the phonon DOS is decidedly un-Debye-like, decreasing
smoothly to zero. This behavior is due to the finite size of the
crystal, as well as its cubic shape.

2. For the smaller particles, the phonon DOS as a discrete function,
especially at lower energies, with a large energy gap between
zero energy and the first mode. For 50 nm particle, however, the
DOS appears nearly continuous at all energies, and is similar in
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Figure 7. The phonon density of states at low phonon energies phonon energy
of cubic nanoparticles with 250 × 250 × 250 atoms, 25 × 25 × 25 atoms, and
15 × 15 × 15 atoms. The velocity of sound was set to 3400 m/s.

appearance to the DOS in a bulk cubic particle. Figure 7 shows
the DOS at low phonon energies, the region most affected by
particle size.

3. The results in Figures 6 and 7 are for cubic crystals, but the
discreteness of the DOS at low energies is a common feature to
all very small particles.

The discreteness of the phonon DOS of a small particle is due
to the fact that in going from a bulk crystal to a nanoparticle, the
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Figure 8. Emission spectra of the 4S3/2 to 4I15/2 transition in bulk (dotted line)
and nanocrystals (solid line) of Er:Y2O2S at 2.6 K.20

total number of phonon modes decreases drastically. This decrease is
easily estimated by noting that the total number of phonon modes is
simply 3N-6, where N is the number of atoms in the particle. N can
be estimated as

N ∼
(

L

a

)3

[43]

For a bulk crystal with L = 0.3 cm and a = 0.2 nm, 3N ∼ 4.5 ×
1021, whereas when L = 3 nm, 3N ∼ 4.5 × 103. Thus, going from a
particle size of 0.3 cm to 3 nm the total number of allowed phonon
modes decreases by 18 orders of magnitude! As a result, the phonon
spectrum is no longer a continuous function of energy.

Given the importance that phonon-related processes play in
the luminescence from ions in solids, the change in the phonon
DOS going from a bulk crystal to a nanoparticle is likely to
have observable experimental effects. In the following sections,
we take note of experiments that have, or have not, revealed such
effects.

Effect of the Phonon DOS on the Establishment of
Thermal Equilibrium

Following absorption of a photon, a luminescent ion generally
relaxes to a state of quasi-thermal equilibrium; an excited state in
which the electronic and vibrational levels are populated according to
properly weighted Boltzmann factors. The relaxation to equilibrium
requires the participation of all phonon modes as well as the mixing
of those modes, and generally occurs on a picosecond timescale. For
small particles, where the low frequency modes are discrete and well
separated from one another, we may expect the establishment thermal
equilibrium following excitation to be inhibited.

Experimental evidence of this effect has been observed by G.
Liu et al.,20,21 who conducted emission and excitation experiments
on Er-doped Y2O3 nanoparticles with radii ∼400 nm and 25 nm.
Figure 8 shows an emission spectrum at 3 K of the 4S3/2 → 4I11/2

transition of Er in Y2O3 following excitation with a pulsed laser
into the 4F3/2 level. In the 400 nm particles, the emission originates
from only the lowest energy level (level (a) in Figure 8) of the 4S3/2

manifold, because in thermal equilibrium at 3 K only the lowest level
of the 4S3/2 manifold is occupied. In the 25 nm nanoparticles, however,
one observed anomalous hot emission bands that originate from the
upper crystal field level (level (b) in Figure 8) of the 4S3/2 manifold.

Figure 9. Excitation spectra of the 7F2 to 4I15/2 emission in bulk (dotted line)
and in nanocrystals (solid line) of Er:Y2O2S at 2.6 K.20

The data suggest that in the 400 nm particles there is fast relaxation
from level (b) of the 4S3/2 manifold to its lower level (a), leading to
emission only from the lower 4S3/2 level. In the 25 nm nanoparticles,
however, this relaxation from (b) to (a) is inhibited, since there is no
available mode to accept a phonon of that low frequency (∼15 cm−1).
Consequently, the one-phonon decay process at that energy does not
occur in the nanoparticle, allowing level (b) to remain populated long
enough to emit a photon.

Anomalous bands were also observed by Liu et al. in excitation
spectra of the same system (Figure 9). In the larger particles (dotted
line) at low temperature, the excitation spectrum shows four absorp-
tion transitions (1 → a, b, c, d) that lead to emission. This behavior is
completely unsurprising, since only the lowest energy level is occu-
pied before excitation. In the nanocrystals (solid line), however, the
excitation spectrum shows numerous lines in addition to the four lines
observed in the bulk spectrum. An analysis of these lines shows that
they represent transitions from crystal field levels 1–5 of the ground
4I15/2 manifold to the crystal field levels a - d of the excited 4F7/2

manifold, as shown in the insert of Figure 9. This is rather surprising,
since thermal equilibrium demands that only the lowest energy level
be occupied at T = 2.6 K.

The results shown in Figure 9 are explained as follows. In the
excitation experiment, absorption of the exciting laser light into the
4F7/2 level is followed by a fast relaxation to the lower 4S3/2 level.
This relaxation, which is accompanied by the emission of phonons, is
fast enough to occur before the laser pulse has ended. These phonons
created during relaxation may be absorbed by a nearby Er ion, causing
that Er ion to become excited to one of the excited levels in the ground
state manifold. This is done either via a direct one-phonon process or
via two phonon processes, namely Orbach or Raman processes. Once
in the upper levels of the 4I15/2 ground state manifold, relaxation to
nearby lower levels becomes improbable due to the absence of phonon
modes at the required (low) energies for relaxation. As the laser pulse
continues, absorption from the now occupied higher levels of the 4I15/2

manifold to the 4F3/2 levels results in the hot bands in Figure 9. We
note that at ∼7 K, these hot bands disappear. Apparently, even at 7 K,
two-phonon processes are fast enough for thermal equilibrium to be
established on a sub-ns timescale.

These results demonstrate the effect of the discreteness of the
phonon DOS in small particles. However, they also hint that observing
such effects may be difficult; the discreteness of the phonon DOS
can be masked by second-order processes and/or by the mixing of
phonons due to anharmonic contributions to the potential, even at low
temperatures.
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Figure 10. Temperature dependence on the thermal broadening of a spectral line (given by the sum in Equation 48) for cubic nanoparticles (15 × 15 × 15-black,
25 × 25 × 25-blue, 100 × 100 × 100-red, 1000 × 1000 × 1000-green) for temperatures ranges 1–30 K and 30–700 K.

Thermal Broadening and Shifting of Sharp Spectral Lines
in Nanoparticles

Broadening of a spectral line in a nanoparticle.— In Thermal
broadening and shifting of sharp spectral lines section, the broad-
ening of a spectral line was found to depend on the phonon DOS
and on the phonon occupation number of each state. Earlier, we
estimated the phonon density of states using Debye approxima-
tion, and the sum over all phonon states was carried out by inte-
gration. For nanoparticles, the phonon DOS is a discrete function
of phonon frequency, and the sum over states must be carried out
directly.

As discussed earlier, the thermal broadening of a spectral line
is mainly due to the Raman scattering of phonons. The rate of such
processes involving the absorption of a phonon from k and an emission
of a phonon into mode k′ is given by Equation 27:

(WRaman)kk′ = 2π

h̄2

∣∣α′∣∣2ωkωk′ nk (nk′ + 1) �
(
ω f

)
, [44]

where α′ is given by 26. The total transition rate is found by summing
44 over all final states of the lattice, subject to the condition that en-
ergy must be conserved. In nanoparticles, the phonon DOS, �nano(ω),
depends on the size and shape of the sample. Examples are shown in
Figure 6. In describing the density of phonon states, it is important
to recall that each phonon mode represents a resonance of the solid,
having a peak, line shape (f(ω)), and line width (�ω). The phonon
DOS evaluated at frequency ωi is

�nano (ωi ) = g (ωi ) f (ωi ) , [45]

where g(ωi ) is the degeneracy modes at frequency ωi . Though the line
shape is more correctly represented as a Lorentzian, we shall simplify
the shape to the “top hat” function, that is:

f (ω) =
{

1/�ωforω − �ω/2 ≤ ω ≤ ω + �ω/2
0 elsewhere , [46]

We also assume that linewidth of each resonance, �ω, independent of
ω. For sharp spectral lines, we further assume that the main contribu-
tion to the broadening occurs when |ωk − ωk′ | ≤ �ω/2, that is, the
phonons in the scattering process are of nearly the same frequency. In
such a scheme, we may approximate the density of final states as

�(ω f )=�nano (ωi ) �nano(ωi
′)�ωi�ωiδ

(
ωi −ωi

′) = �2
nano (ωi ) (�ω)2

[47]

Summing 44 over phonon frequencies, and using Equations 45–47,
the total transition rate of the Raman process is

WRaman = 2π

h̄2

∣∣α′∣∣2 ∑
k

g2 (ωk) ωk
2nk (nk + 1) f 2 (ωk) (�ω)2

= 2π

h̄2

∣∣α′∣∣2 ∑
k

g2 (ωk) ωk
2nk (nk + 1) [48]

The degeneracy term g(ω) includes all modes within a range ω ±
�ω/2. In Figure 6, the energy axis is broken up into 1000 bins, each
with energy range �ω ∼ 0.5 cm−1. g(ωk) is given by the number of
modes in the kth bin, where ωk is the central frequency of the bin. The
term nk carries the temperature dependence of the broadening. The
sum expressed in 48 was carried out for four particle sizes and over
a range of temperatures from 1 K to 700 K. The results are shown in
Figure 10. The vertical axis in Figure 10 is in arbitrary units, so the
curves show only the temperature dependence of the broadening. We
make the following observations regarding these results.

1. The strongest temperature dependence of the line broadening
occurs at temperatures below 10 K independent of particle size.
The temperature dependence is stronger for smaller particles in
this temperature range.

2. Above 300 K the curvature of the lines in Figure 10 are indepen-
dent of particle size, indicating that the thermal dependence of
the broadening is the same for all particle sizes.

3. Figure 10 also shows that above ∼10 K the absolute broadening to
be larger for smaller particle sizes. However, this effect depends
on the details of the calculation (e.g. the binning of the data and
the “top hat” line shape function), and should not be taken too
seriously.

To understand the strong temperature dependence of the broaden-
ing at low temperatures, it is useful to consider not just the phonon
density of states, but also the occupancies of the phonon modes. Fig-
ure 11 shows the product �nano(ε)n(ε) for the 3 nm particle at T =
10 K, 100 K, and 500 K. At 10 K, only a few modes are occupied, and
the phonon occupation numbers are very small, much less than 1. At
1 K, the occupancy of the lowest mode in the 3 nm particle is ∼10−23.
Thus, in a nanoparticle, there are essentially no phonons at 1 K, so
there is no broadening. This helps explain the strong dependence (on
a logarithmic scale) of the broadening in the 3 nm particles at low
temperature shown in Figure 10.
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Figure 11. Graphs showing the number of phonons as a function of phonon
energy, i.e. �(ε)n(ε) vs. ε, for cubic nanoparticls 15 × 15 × 15 atoms (size
∼3 nm) at T = 10, 100, and 500 K.

Using hole-burning experiments, Meltzer and Hong22 examined
the broadening of the 7F0→5D0 transition of Eu2O3 spherical nanopar-
ticles of different diameters (5.4, 7.6, and 11.6 nm) at temperatures
between 4 K and 10 K. They observed a Tn dependence, where 3 < n
< 4, for the thermal broadening of the line. This dependence is much
smaller than that shown in Figure 10 for the 5 nm particles, and was
also much smaller than their own calculated predictions. In contra-
diction to the results in Figure 10, the authors observed the thermal
broadening increasing as the particle size decreases. To explain this
they refer to calculations that posit an inverse relation between the
electron-phonon coupling and particle size.23

Figure 12. Linewidth vs. temperature of the R1 line in nanopowders (●, 28
nm, �, 58 nm, �, 250 nm), and in a single crystal (�) of Cr-doped YAG. The
solid lines are fits to Equation 33.

Erdem et al.24 measured the linewidth of the 2E→4A2 transition of
Cr-doped YAG nanoparticles at temperatures from 30 K to 300 K as a
function of particle size (Figure 12). The results were fit to Equation 34
assuming Debye temperature of 550 K and where the electron-phonon
coupling parameter, α′, was allowed to vary. The fits to equation (64)
are reasonable good, showing that even in nanoparticles as small as
28 nm behave similar to the bulk crystal. This is consistent with the
behavior shown in Figure 10. Excellent fits to Equation 34 were also
reported by Bilir et al. on the temperature dependence of the linewidth
of Nd nanoparticles ranging in diameters from 16 to 250 nm.25

It is interesting to note that in two of the above works24,25 the
data indicate that the thermal broadening decreases as the particle
size decreases. The authors suggested this was due to the fact that
the electron-phonon coupling parameter decreases with particle size.
They explain this result as follows: ions near the surface have bond
lengths with neighbors that are slightly above the standard length,
which would decrease the overlap of the wavefunctions of the ion and
those of its ligands, thereby lowering the electron-phonon interaction.
This explanation is consistent with arguments that the electron-phonon
coupling depends on the covalency of ion-ligand bond, as covalent
bonds tend to have greater overlap between the wavefunctions of the
electrons associated with the ions with those of the ligands.17–19,26 In
Reference 22, on the other hand, the authors measured the broadening
of Mn2+ in ZnS nanoparticles of various sizes, and concluded that
particle size has no effect on the electron-phonon coupling.

The examples above show an unresolved conflict in the behavior
of the electron-phonon coupling as the particle size changes. Whereas
Meltzer et al.22 suggest an increase in the coupling as the particle
size decreases, the data from Erdem et al.24 and Bilir et al.25 suggest
a decrease in the coupling as particle size decreases. And finally
Suyver et al.26 conclude that electron-phonon coupling is independent
of particle size. Of course, the above works were done in different
temperature regimes (4–10 K, 30–300 K, 30–700 K, 4–300 K for Refs.
22–25, respectively), with particles of different sizes, and for weakly-
coupled22–25 and strongly-coupled25 systems, so the conclusions are
not necessarily in conflict with one another. A definitive answer as to
how the electron-phonon coupling depends on particle size remains
elusive.

Shifting of a sharp spectral line in a nanoparticle.— The theoret-
ical treatment of the thermal shift of the energy of the spectral line in
a nanoparticle begins with Equation 38 the shift due to a particular
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Figure 13. Temperature dependence on the thermal shift of a spectral line (given by the sum in Equation 50 for cubic nanoparticles (15 × 15 × 15-black, 25 ×
25 × 25-blue, 100 × 100 × 100-red, 1000 × 1000 × 1000-green) for temperatures ranges 1–30 K and 30–700 K.

phonon mode, k.

�εk = h̄

Mv2
s

⎡
⎣〈φi |V2|φi 〉 +

∑
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⎤
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[49]
To find the total thermal shift of the particle, we neglect the contri-
bution of spontaneous emission in 49 (i.e., (2nk + 1) becomes (2nk)),
and sum 49 over all phonon modes. Referring to 45 and 46, the total
thermal shift can be written as:

�ε = 2h̄
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⎤
⎦∑

k

g (ωk) ωknk

[50]
The sum in 50 carries the temperature dependence of the thermal

line shift. Figure 13 shows the values of the sum in Equation 50 for
cubic nanoparticles (15 × 15 × 15, 25 × 25 × 25, 100 × 100 × 100,
and 1000 × 1000 × 1000 atoms) at temperatures between 1 K and
700 K. Similar to the case of line broadening, the main differences
between the shift in large and small particles occurs at very low temper-
atures. At high temperatures, the thermal shift is nearly independent
of particle size.

Erdem et al. studied the lineshift of the 2E→4A2 emission line of
Cr3+ in YAG in nanoparticles and in a bulk crystal, and the results
are shown in Figure 14.24 The results show that the thermal lineshift
decreases as the particle size decreases. In that work, the lineshift was
fit to Equation 39 assuming a Debye temperature of 550 K, and it
was found that, as with the thermal line broadening data, the electron-
phonon coupling parameter decreased with particle size. Given the
lack of a comprehensive theory and the dearth of experimental data
on the dependence of the line shift on particle size, more work is
required to say definitively why the shift is less in smaller particles.

Vibronic Transitions

Following excitation, the decay of an isolated ion can occur via (1)
emission of a photon, (2) emission of phonon(s), or (3) the emission
of a photon concurrent with the absorption or emission of one or more
phonons. This third process is referred to as a vibronic transition.
For broad-band emitters, these transitions are the dominant feature
in both absorption and in emission, whereas for sharp line emitters,
the vibronic transitions appear as sidebands to the zero-phonon line.
Figure 15 shows spectra of Cr-doped GGG, which produces both
broad band and sharp line emissions at high temperatures. At low
temperatures, this system shows a sharp zero-phonon line, with highly

structured sidebands, with no broad band emission. This type of emis-
sion, i.e., sidebands and a dominant zero-phonon line, is common
to most optically active ions that are weakly-coupled to the lattice.
Vibronic sidebands in weakly-coupled systems have been discussed

Figure 14. Line shift vs. temperature of the R1 line from Cr-doped YAG
nanopowders and from a single crystal. The blue lines are fits to Equation 39.
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Figure 15. Emission spectra of Cr3+ in GGG. At low temperatures the emis-
sion is dominated by the R-lines (originating from the 2E level) and the vibronic
sideband. As temperature increases, a broad band emission from the Cr 4T2
level is also observed.

by several workers [e.g. 27–29]. In this section we focus on vibronic
transitions in such weakly-coupled systems.

Vibronic sidebands of sharp lines - Theory.— In this section we
review some theoretical aspects of vibronic transitions in the weak
coupling limit. In such systems, the narrow zero-phonon line is ac-
companied by sidebands, which result from the modulation of the
zero-phonon transition by the vibrations of the solid. In the low tem-
perature spectrum shown in Figure 15, one immediately notices the
rich structure contained in that sideband, structure that contains infor-
mation of the phonon density of states. To explain such a structure,
we must consider the interaction of the ion with the various phonon
modes of the crystal.

The transition rate of a vibronic transition involving the emission
of a photon and of a phonon in the kth mode is governed by terms
having the following form:

Wk ∝ [|〈φ f nk+1|Oph |φ j nk〉〈φ j nk |Orad |φi nk〉|.2

+.|〈φ f nk+1|Orad |φ j nk〉〈φ j nk+1|Oph |φi nk〉|2] [51]

where Orad and Oph in Equation 51 represent the appropriate radiative
and nonradiative operators and φi, φj, and φf are the wavefunctions of
the initial, intermediate and final electronic states, respectively. The
first term in Equation 51 represents a process whereby a photon is
created in a transition from the initial electronic state to an interme-
diate electronic state, and then a phonon is emitted in the transition
to the final electronic state. The second term reverses the order of
these transitions. Figure 16 shows a schematic drawing of a vibronic
transition that represents by the second term in Equation 51.

Figure 16. The vibronic emission process with states and transition operators
labeled according to irreducible representations.

0 200 400 600 800

Distance from zero-phonon line (cm-1)
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Figure 17. (a) The density of states of MgO as determined from neutron
scattering31 shown with (b) the vibronic sideband of MgO:V2+.29

Each of the electronic wavefunctions and the operators have a
certain symmetry, and using group theory one can associate them with
certain irreducible representations. We make the following definitions.

�i : the irreducible representation of the initial electronic state of
the transition

�f : the irreducible representation of the final electronic state of
the transition

�r : the irreducible representation of the radiative operator (We
will assume that this is the electric dipole operator.)

�v: the irreducible representation of the vibrational mode involved
in the transition

The selection rule for the vibronic transition, shown in Figure 16,
is that the direct product �i × �vib × �r must contain �f: That is

� f ∈ �i × �v × �r [52]

We note that 52 is merely a selection rule, and can only be used
to determine if a particular transition can occur; it cannot be used to
determine the strength of a transition.

Vibronic sidebands of sharp lines - Experimental.— Consider
the case of a vibronic spectrum in emission at low temperature of
MgO:V2+, shown in Figure 17b.29 V2+ is a d3 ion surrounded by six
oxygen ions in octahedral symmetry. Because the site has inversion
symmetry, electric dipole transitions between two electronic states
within the d3 configuration are forbidden. As a result, the purely ra-
diative transitions (accounting for the zero-phonon line) are driven
by the magnetic dipole operator. Odd vibrations of the local com-
plex destroy this inversion symmetry, so that the vibronic transitions
involving such vibrations are electric dipole allowed.
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Applying Equation 52 to the case of vibronic transitions in
MgO:V2+, it is possible to determine which vibrations can contribute
to the observed phonon sideband. First, we observe that the normal
vibrational modes of the site symmetry of the octahedral group Oh

are either purely even or purely odd. The representation of the final
electronic state (�f) of the V2+ ion is known to be even. Since the
electric dipole operator (�rad) is odd, then a transition from the inter-
mediate state via the electric dipole, according to Equation 52, will
be allowed only if the intermediate state is odd. The initial (excited)
electronic state of V2+ (�i) is also even, so that only odd vibrations
will be involved in the transition from �i to �j. Thus, Equation 52
reduces to a statement of the parity selection rule.

It has been shown that of the phonons modes featured most promi-
nently in the density of states of MgO, most of them can induce the
octahedral complex to oscillate in one or more of its odd vibrational
modes.30 As a result, nearly all of the crystal phonon modes are able
to participate in the vibronic transitions. The phonon spectrum of the
MgO crystal (obtained by neutron scattering data)31 is shown in Fig-
ure 17a. The similarity of the shape of the low temperature vibronic
sideband (Figure 17b) to that of the phonon spectrum is striking,
and suggests that the vibronic sideband can be closely related to the
phonon spectrum of the lattice. That these two spectra show striking
similarities and that nearly all phonon modes of the MgO crystal can
cause local vibrations to participate in the transition is not coinci-
dental. However, proving that there is a one-to-one correspondence
between the peaks (and valleys) of the two spectra is not trivial, since
that would require calculating the transition probabilities for each of
the 3N-6 normal modes of the crystal. Even if such a calculation could
be done, it is no guarantee that such a calculation would be able to
reproduce the observed vibronic spectrum. Generally speaking, the
shape of the vibronic spectrum will not exactly mimic that of the den-
sity of phonon states. It may, however, be a practical way of gaining
insight into the phonon density of states for some crystals.

The above observations suggest that in small nanocrystals, where
the confinement on the density of states is most severe, one would
expect that changes to the density of states to be obvious in the vibronic
spectrum of the nanoparticle. In fact, such a result would represent
perhaps the most direct experimental evidence of the reduced density
of states in nanoparticles. Unfortunately, because of surface effects,
there is a significant amount of disorder in a nanoparticle, resulting in
a broadening of the zero-phonon line (and of the vibronic sidebands).
The sum of the contributions from various sites overlaps with a large
portion of the phonon sidebands of the zero phonon line from the
“normal” site. An example of this is shown in the vibronic spectra of
Cr-doped YAG nanoparticles shown in Figure 18. Perhaps due to the
fact that this overlap is most prominent near in the low energy range
of the sidebands, where the most obvious changes (i.e., discreteness
of the density of states and absence of the very low energy modes)
to the density of states occur, there is no reported vibronic spectrum
that clearly shows the vibronic spectrum changing with particle size.
The difficulty in observing this is also complicated by the fact that the
emission from nanoparticles is often very weak, probably because of
the large number of surface states.

Energy Transfer Among Ions in Nanoparticles

In the context of optically active ions in solids, energy transfer
refers to an excited ion transferring all or part of its electronic energy
non-radiatively to another ion. A theoretical treatment of this process
was first developed by Förster32 and Dexter.33 Though energy transfer
is known to occur between a variety of different ions, we focus here
on energy transfer among like ions.

When like ions reside in identical sites in a lattice, energy transfer
will be a resonant process, and can be very efficient if the ion-ion
distance is short enough. As the concentration of the dopant increases,
the average ion-ion distance decreases and the probability per unit
time of energy transfer increases, and the excited electronic energy can
migrate through the lattice. In an ideal lattice (i.e. one with no defects)
such an energy transfer process, no matter how fast, will not affect

Figure 18. Emission spectra at different temperatures of Cr:YAG particles of
28 nm, 58 nm, and >1000 nm. Notice the broadening of the spectral lines and
an enhanced background signal as the particle size decreases.

the luminesce properties of the system. However, defects are always
present in the lattice, and energy transfer from an excited ion to a defect
is possible. When the energy transfer becomes very fast the excitation
energy migrates rapidly through the lattice until it reach as defect site,
at which point the energy is lost. This is represented schematically
in Figure 19. In such a system, increasing the concentration of the
dopant ion has two effects on the luminescence properties of the
crystal: (1) a decrease in the luminescence intensity, and (2) a decrease
of the excited state lifetime of the dopant ion. The defect sites are
sometimes referred to as killer sites. The decrease in the luminescence
as concentration of dopant ions increases is referred to a concentration
quenching.

Figure 19. Schematics showing energy transfer among like ions. The resonant
case is typical for bulk materials, and the non-resonant case is more common
to small nanoparticles, where disorder due to surface effects are responsible
for the lack of resonance.
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Figure 20. A plot of the luminescence intensity from Tb-doped Y2O3
nanoparticles of different sizes.39 (Average particle sizes: 3 nm – as syn-
thesized, 6 nm - 300◦C, 21 nm - 500◦◦C, 35 nm - 700◦C, 58 nm - 900◦C.)
Note that the curves are normalized so that the maximum emission intensity
from each sample is set to unity.

Now let us consider what happens in a nanoparticle. In the core of
the nanoparticle, the ions are located at sites that are nearly identical
to sites in the bulk. As one moves closer to the surface, however, these
sites become slightly distorted, and as a result the energy levels of the
ions shift, becoming out of resonance with those at the core. Energy
transfer between two ions that are not in resonance requires the
emission or absorption of one or more phonons to make up the energy
difference. The probability per unit time of this phonon-assisted
energy transfer due to the participation of modes with frequency ωk

is given by:34

Wk = 2πb

vs V

(
R0

R

)s−2

ωk� (ωk)
{

n (ωk) + 1 n (ωk) , [53]

where s is the order of the multipole interation (s = 6 for dipole-dipole
interaction), V is the volume of thre nanoparticle, b contains to the cou-
pling between the two ions and the electron-phonon coupling, andh̄ωk

is of the correct energy to make up for the energy mismatch between
the two excited levels. The terms in the curly bracket in 53 contain the
temperature dependence of the transfer rate, with top term appliying
to phonon emisison and the bottom term to phonon absorption.

As shown in Figure 20, in the case of resonant energy transfer the
energy is finally lost at a killer site, while in the non-resonant case,
the migration of energy is inhibited, and the energy may be given off
as luminescence.

In typical bulk crystals, the concentration quenching of lumines-
cence appears at dopant concentrations of approximately molar 1%.
As the concentration continues to increase, the total luminescence
from the crystal decreases. When the dopant level reaches several
molar percent (eg. 10 - 20%) the luminscence becomes difficult to
detect, having decreased by a few orders of magnitude. In basically
all bulk materials, the amount of luminescence efficiency at high
dopant concentrations continues to decrease as the concentration is
further increased.

In nanoparticles, several groups have found that the luminescence
in nanopaticles persists at higher dopant concentrations than in bulk
materials,35–38 and sometimes even increases with increasing dopant
concentration. Figure 20 shows the example of a Tb-doped Y2O3

system in which for the smallest particles the luminescence contin-
ues to increase at concentrations far higher than for the much larger
particles.39 For the largest sized particles, the luminescence intensity
drops precipitously at concentrations above ∼5%, whereas for the
3 nm (“as synthesized”) particles the luminescence intensity is still

increasing even at concentration of 50%. This is explained as being
due to the fact that as the nanoparticles decrease in size, the ions
become more and more out of resonance with one another, making
energy transfer less probable. Also, given that the phonon DOS term
in 53 becomes a higly discrete function for 3 nm particles, it is likely
that phonon modes present in the bulk that participate in the energy
transfer process are not available in the nanoparticles. Thus, the proba-
bility of energy transfer as particles size is decreased becomes smaller
for two reasons: (1) greater disorder leads to greater nonresonance
between ions, and (2) the reduced avaiabiltiy of phonon modes to
participate in the energy transfer process.34

Conclusions

This paper presented some theoretical treatments of some nonra-
diative processes that affect the luminescence properties of optically
active ions in solids, and considered how such properties might be
affected as the size of the particles are reduced to the nano-regime.
This paper first presented a detailed discussion of the electron-phonon
coupling terms for the different adiabatic approximations were then
discussed. This electron-phonon coupling was the used to determine
the thermal broadening and shifting of sharp spectral lines of
optically active ions in solids. Integral to the broadening and shifting
of spectral lines, and indeed to most non-radiative processes, is the
phonon density of states in the system under investigation. Given that
one goal of the paper was to examine how non-radiative processes
depend on particle size, we then investigated how the phonon density
of states depended on particle size. This investigation consisted of
calculations of the phonon density of states for cubic nanoparticle,
where it was found that for very small particles, the phonon density
of states becomes very different than for bulk particles. The most
obvious change in the phonon density of states between macro and
nano systems occurs at the low energy end of the spectrum. With
this background, the question of how non-radiative processes in
doped insulators are altered as the size of the particles change from
macroscopic to nano-sized was considered.

The fact that the electronic states of optically active ions in insu-
lators are highly localized to the site of the ion, the general theory
of non-radiative transitions is largely unaltered as the particle size
changes. A review of the theory of thermal line broadening and line
shifting, presented early in the paper, allowed us to determine exactly
at what point the traditional theory had to be altered so as to be applied
to small particles, this point being where the phonon density of states
of the lattice is inserted into the theory. Using the calculated densities
of states for cubic nanoparticles, we examined the thermal broaden-
ing and shifting of spectral lines for various particle sizes over a wide
temperature range. Initial results hint that the effects of particle size
on the broadening and shifting of lines are most likely to be observed
only at low temperatures and in very small particles. Even in particles
on the order of 50 nm, one is unlikely to be able to discern any con-
tribution to theses processes due to confinement effects of the phonon
density of states. Also discussed were the following (1) how the re-
duced phonon density of states inhibits the systems ability to reach
thermal equilibrium, (2) possible changes in the vibronic sidebands,
and (3) how the large surface to volume ratio and the reduced density
of phonon states conspire to inhibit phonon-assisted energy transfer,
reducing the effect of concentration quenching of luminescence.
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