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The study of the energy-transfer processes is extended, within the conceptual framework of the crystal
model, to the electric dipole-electric quadrupole and electric quadrupole-electric quadrupole interactions. The
formalisms for the energy-transfer rates are deduced, applying a mixed scheme of Cartesian tensors which are
used to establish the geometric aspects of the interaction, and spherical tensors for the electronic part. The
dependence of these transfer rates with respect to the geometric factors is discussed, and they are compared
with the electric dipole—electric dipole case. In general, and as a consequence of the intrinsically anisotropic
character of the quadrupolar operator, the analysis shows formally that those rates are highly anisotropic,
suggesting a more careful calculation and interpretation of the transfer rates in organized media, like crystalline
phases. This type of analysis shows the faults of the models currently used and cited in the literature, and the
importance of the anisotropic effect is illustrated with an application in elpasolite type lattices doped %ith Ln
ions which occupy centrosymmetric sit¢S0163-182099)12835-2

[. INTRODUCTION both the quantum aspects as well as statistical details of the
interaction between theonor ions and theacceptorions
In the literature of the last decades an important amounforming the crystalline system, and has led us to extend its
of work related to energy-transfer processes in various typegalidity by studying other types of interactions. Thus a si-
of solid-state compounds has been reported, especially thogeultaneous papét tackles the formal analysis of processes
related with experimental studies of these types of effects ifnediated by direct exchange interactions, which must be
a large variety of crystalline systems containing luminescengélatively important in systems that have very close together
centers or chromophores such as ions of transition metal§Ptical centers. However, if the crystallographic arrangement
lanthanides, and actinidés® At the same time, complemen- shows greater separations between the interacting atoms, the

tary theoretical models explaining those observations Werg)nger-range interactions, typically electric and/or magnetic

introduced with the pioneering work of Esier/ and contin- multipole interactions, should predominate.

§ . . 3 d0-13 The theoretical estimation of the transfer rates involves
ued later by Dextet,Inokuti and Hirayamd,and others, the calculation of interactions between a genedimnor-

whose main purpose was to estimate the raftgs of the  4cceptorion pair. At the initial instant; =0, the first ion is in
energy-transfer processes. With varying degrees of accepp excited state, while the second is in the ground state or in
tance, all these models have been applied to a large variety gf|ower excited state. The relaxation of the donor ion and the
crystalline systems, including those in which the ions areransfer of energy to the acceptor ion can occur in several
found in centrosymmetric as well as noncentrosymmetriayays; however, for the purpose of this study, and taking into
point symmetry site$!~ In most cases it has been men- account the properties of the particular lattice chosen as an
tioned that such models can explain correctly the observaexample, the most important are electric multipolar, mag-
tions. In particular, it is interesting to note that the model ofnetic dipolar, and phonon-assisted energy transfer.
Inokuti and Hirayamahas been used extensively in the last  The point symmetry site of each one of the chromophores
three decades, even though its conceptual limitations werig an important aspect for finding the effective contributions
rapidly acknowledged after its publicatidfLater models to the global energy-transfer rate. In the case of chro-
have not improved that aspect sensibly, since the main commophores at centrosymmetric point sites, the selection rules
tradiction is that they are based on a sum of interactionpredict that the most important contributions would be mag-
between ions that assumes a continuous distribution of lumiretic  dipole—magnetic ~ dipole (MD-MD), electric
nescent centers within the system. This is certainly not theuadrupole—electric quadrupoldEQ-EQ and electric
case in crystalline media, where the ions are distributed inlipole—electric dipole by a phonon-assisted mechanism or of
very specific positions in the lattice. This points to the needhe vibronic type(EDV-EDV). The theoretical treatment of
to revise those models and formulate alternative ones thgthonon processes has been attempted by some aiee:s
can remove those controversiés?? e.g., Refs. 27 and 28leading to a basic formalism that is
The generation of more correct formalisms for the studyvalid only in restricted caseS.Energy-transfer processes by
of energy-transfer processes has had limited success in pran electric vibronic dipole mechanism can also be consid-
vious works of this serie§~2° devoted to the development ered, but few papers in the literature refer to that problem
the crystal model, because it was just applied to dipolefrom a theoretical standpoifit.
dipole interactions. This model considers in a realistic way Having treated the problem of the energy-transfer pro-
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cesses due to dipole-dipole interactions in previous papers in

this serie$>~24in this paper the analysis is extended to pro-

cesses that involve higher-order electric multipolar interac-

tion mechanisms. The main purpose of the work is to inves-

tigate the effect of the introduction of quadrupole transition

momenta in the energy-transfer rate expressions, since it is

admitted that the corresponding operator is intrinsically

anisotropic:! The working hypothesis for this paper is that

this must necegsarily lead t9 anisotropic energy-transfer FIG. 1. Typical spatial arrangement AfandB interacting elec-

rates, even for highly symmetric systefssich as that of the = yqnic density charges.

example discussed belpwA similar idea has been consid-

ered in the parallel papéf,which studies direct exchange . )

interactions. Of course, the mathematical aspects of both p&gated from the experimental standpoint and has been the

pers are closely related, but differ in the structure of thelarget of theoretical interest in recent ye&s:

interaction Hamiltonian for each case, and therefore in the The particular choice of this cubic system has a twofold

exp”cit final formalism obtained for the energy-transferjUStifiC&tion: In the first place, the distance between optical

rates. centers is relatively important, allowing very short-range
The interaction anisotropy is an aspect that has receivedontributions such as direct exchange to be neglected. In the

little attention in the known models, and in fact most of themsecond place, structurally the system has high symmetry,

have been proposed as if the medium were isotropic and th&hich allows the effect of the interaction anisotropy on the

electric multipolar interaction depended exclusively on theenergy-transfer rates to be seen more clearly.

distance according tB™S, wheres accounts for the type of

mechanism(s=6, 8, and 10 for dipole-dipole, dipole-

quadrupole, and quadrupole-quadrupole mechanisms, re- IIl. INTERACTION POTENTIAL

spectively. The transfer rate is usually expressedVig,

=CO xRS, where all the angular, geometric, and elec-

tronic dependencies are included in the paraméét. A

formal expression for this parameter is

Using a general type of electrostatic perturbation, and
within a model of independent systems, the various multipo-
lar contributions are specified initially by means of their Car-
tesian operators, coupled to a symmetric te{atso Carte-
sian that contains the system’s geometric information. For
the purpose of this study, and considering a situation of chro-
mophores separated by sufficient distance as to neglect the
contributions due to exchange, the perturbation Hamiltonian,
H’, of the interacting electronic densitiBsandA, is usually

(2ky + 2ky)! )
(8) = g2 "Dkt 4\]2
C¥=¢" 2 GrrnizkrDr| > (@Dl

x| 2 KdIDZIdP| [s=2(kitko+ D), (D) expressed &S
q2
and in its calculation some approximations have been made s g2
that include averages over spatial orientations arjdsym- Hoa= 2

bols. As a result of thatC® is considered identical for all i
the chromophores, and is treated as a parameter whose mag-

nitude can be deduced from the fitting of the experimental s ot e?
data®?’ =53

Recently?®~?*the crystal model has been used to charac- is1im1 raj=Toil2+2R- (ra—rpi) | ¥
terize the environment around a donor {@nbitrarily located R 1+ R

at the origin of the coordinatgsdefining a set of angular
classes and shell components that account for the complete
arrangement of acceptor ions in the system. Under the con- @
dition of a binomial type statistical distributiof.e., a ran-

dom distribution of luminescent centers as substituents or

gggigii;igr:h:ngftli:”gfIi?\?étre():nt/tsitsal fég?ge\'\{ghc'géheo[ﬁ?ewhere conventional subscripts have been used for the dis-
9 > P Y }ances shown in Fig. 1. From E) the multipolar expan-

statistical analysis under any doping condition in the crystal . . L .
lattice, and obtain an energy-transfer rate averaged over thaCn 1S easily found, because the conditigrrp;,r;, is

whole crystal. This makes it possible finally to obtain a com-Satisfied for sufficiently separated chromophores. ,
pact formalism for the effective energy-transfer rate. In. what .foIIows,. and fqr simplicity, the dlfferent.electnc
The general expressions are exemplified through the erdnultipolar interactions will be referred to ad:-d (dipole-
ergy transfer between lanthanide ionsLiin the elpasolite-  dipole), d-q (dipole-quadrupole and g-q (quadrupole-

type lattice, a model system that has been thoroughly invegiuadrupolé In vector notation, they correspond to
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t s t
Hpx= {(E erD.)- 2, era| =32, 2 (era-RI(R-erp) [, 3
s t S t
HERo= 4[21jZl[e(rDi~rDi>—5e<rDi~R)(R.rDi>—ze(rAj~rDi>]<R-erA,»)—i21jZl[e(rAj-rAj>—5e(rA,-~R><R~rA,-)

—2e(rAj-rDi>]<F“e-erDi>], (4)

S t
Hpa'= %RF’[ 21 ;l [e(raj-Taj)e(rpi-pi) —5€(rp;- roi)e(R- rAj)Z_Se(rAj'rAj)e(ﬁ' rDi)z_Z(bz(rAj'rDi)(ﬁ' raj)

X(R-rpj)+35%%(R-14)2(R- rDi>2+2e2<rAj~rDi><rAj~rDi>]}. (5)

In this notationR=R/R is a unit vector that accounts for the
direction of interaction between both multipoles. The expan-
sion has been truncated because it is expected that the re-
maining higher-order multipoles will not contribute signifi- By inspecting Eq.(8), it is seen that it considers a pair of
cantly, particularly if the distances between the optical ‘mirrorimage” contributions depending on the ion in which
centers are relatively important. However, they could be eadhe electric dipolar or electric quadrupolar transition is local-
ily deduced from Eq.(2). The formal attack that will be ized. Thus, in specific examples, it is necessary to determine
followed allows Eqgs(3) and (5) to be expressed in a more whether one of these contributions or both of them are con-
compact form in which the multipole operators are couplecsidered, depending on the degree of complexity of the
by means of a second-rank symmetric tensor which showgnergy-transfer processes.

the geometric dependence of the interaction, of a form simi- In the same way, the quadrupole-quadrupole interaction
lar to that of the already known dipole-dipole ca%3®ror  [Eq. (5)] is straightforwardly expressed in terms of coupled
the sake of completeness, this latter case is presented briefijgadrupolar tensor operators:

in the equation

dq RCVR/J’
CaB: 250[5—5? , Va,B=X)Y,z. (10

S t
10-0_ 3R-5 R-(0,:-CY9.0,)-R
o CU pa}, ©) Hon =R ['Zl 2 R Qur T 0o-R

where the second-rank symmetric coupling terG¢t is es-
tablished by the following matrix elemen&}j (Refs. 19
and 23:

rd-d —
H%9=R

S
=) 2 Tr(Qaj- Qoi) } (11)
The first term on the right of this equation corresponds to the
electric quadrupolar operators coupled by a geometric tensor
of the same structure as in the previous cases, but with an

additional dependence iR?. The algebraic structure of this
From Eqgs.(4) and(5), the multipolar contributions related to product is essentially anisotropic, due precisely to the double

the (d-q) and (@-q) terms can be expressed in a similar dot product withR. The second term corresponds to a con-
way: tracted second-rank tensor that shows the direct interaction
between the components of the operators located on each
ion, which is particularly interesting because it corresponds
to an isotropic contribution independent of the relative posi-
tions of the donor-acceptor pair.

R.Rs

Ci%=[5aﬁ 32 ] Va,B=X,Y,z. 7)

ILLDI} 8

In this equationQ is thetracelessformalism of the quadru-

polar symmetric tensaf with the following six components:

QP=e{rrf—3r25,5, Va,f=xy,z 9
Similarly, the symmetric coupling tens@?? in Eq. (8) has
elements of the following form:

The C% elements of the symmetric coupling tengft?
are the following:

R.R
Clf={ —200,5+35—15"(, VaB=xy.z (12

Ill. ENERGY-TRANSFER RATES

The energy-transfer rai®/p, between two chromophores
D andA, one acting as a dondD) and the other acting as an
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acceptor(A) of energy, can be written according to Fermi’s more appropriate form should give the expressions in terms
golden rule, of the five-component irreducible real basg*¥; QY% Q%
> sz‘yz, and sz). This can be done easily by writing the
Wpa=——|(d’alH! |da/)|2f folw)fa(w)dw, (13)  Cartesian quadrupolar operators in terms of spherical tensors,
PAT PA oA Caq= VATI5Y,q, according to Griffith’s conventiofY. This

whereH},, is the electrostatic interaction potential that con-Makes it possible to simplify the estimation of the electronic
nects two terminal states: an initial stald)=|d’a) part of the calculation and to express the squares of the ma-

; 2 2
=|d’}|a) and a final statd2)=|da’})=|d)|a’). Here, the trix elementsx“ andy“ of the quadrupolar operator and cross

primed Iabels mean excited electronic states. The functionfoducts as combinations that inclusfeand (- y?) com-

fo(w) andfa(w), correspond to the spectral form functions ponents; for example, fo@*,

of the ionsD and A within the frequency range of the 5 .

relevant transitions. K1]Q12))P=3 K1Q*2)P+ 3 K1|Q* ¥ [2)F. (17
Since according to FermP's golden rule the energy- final relevant aspect in this analysis of the components of

transfer rates depend on the squares of the matrix elemen@1 P y P

andH ,p includes the three predominant contributions men- € quadrupolar transition moment is the one that refers to
. AB . P the different weight that each one has in the total transition
tioned earlier, there will be pured¢d), (d-q), and @-q)

The first vzed | t detail fmoment. In fact, the squares of the matrix elements take
processes. 1he irst case was analyzed In great detail 19fierant yalues even in high-symmetry systems such as the

cubic lattices in previous pape%%,z“ achieving, for cubic Ln3" ions in octahedral point symmetry, as has been shown
systems, a compact formalism, by Chua and Tannéf. This leads to drastic changes in the
1d-djo\[2_ o6 2 2~dd form of the geometric factor in the dipole-quadrupole case.
KO 2 =Rl aer[*Goa- (149 Finally, qu.(17) is rewritten as PO P
This is a very simple equation in whigB24 is the global
geometric factor of the interaction, and is the result of the KLHERY2)P=R ¥ pae|®
symmetry of the lattice. The explicit form of that factor for

: . ] 3
the dipole-dipole case is % |2 aB |2/ ~dg(ap)
4aB2>§xz,2yz, |Qd’d| (gDA ) ’
1 75 X5y
Gld=C" cddy2 |, 15
oA 9L,3_2x,y,z( «s) 13 (19

It should be noted that this is the result of the properties of/vhereIQg‘,ﬁdl2 are the five components of the quadrupolar

the cubic crystals, for which it is true thap*|?=|u¥|?>  transition moment for the transitiol’ )—|d) in the donor

=|u??=3|u|?. Work on crystals having different symme- ion, andg3%“#) are the particular geometric factors of each

tries is underway. dipole-quadrupole interaction component. The converse term
With respect to the dipole-quadrupole contribution, find-accounts for probabléd’)—|d) electric dipole and|a)

ing the analog of Eq(15) is less direct. Using reasons iden- —Ja’) electric quadrupole transitions.

tical to those given earlier, and taklng advantage of the her- The same procedure is used to express the term corre-

mitic and real character of the components of thesponding to the quadrupole-quadrupole interaction, which
quadrupolar tensor in Cartesian coordinafes derivation of  \would have matrix elements

the squared matrix elements is easily deducible. In matrix
notation we obtain

aB,y8=Xy,yz,xz,
x2—y2 72

) KUHERI2)P =R
K1HERY2)P=5R 8{(a* ‘R )}, (16)

wherea=Qp- CY9. u, is, obviously, a Cartesian vector, and

R=(R*R) is a second- rank unit tensor. This product fol-
lows the same behavior of E(f), although the greater com-

plexity of the mechanism is reflected in the algebra. WorkThe number of geometric factors, both fai-¢) as well as
with Eq. (16) must take into account two aspects that distin-for (q-q) interactions, is important, so a detailed list may be
guish this case from that of thé-d interaction: In the first  requested from the author.

place, it can be shown that the produat*( R- «) includes Summarizing, and by inspection of the previous equa-
not only diagonal quadratic contributions, but also some notions, the anisotropic properties of the energy-transfer pro-
nonzero cross-product-type termsyzaiﬁliyay), VpB+y  cesses that inv_olve highe_r-o_rder muItipo!es can be observed.
=x,y,z. Second, it is necessary to stress that the Cartesidfi the electronic part, this is reflected in the fact that the

representation of the quadrupolar tensor is symmetric an@lectric quadrupolar operator has symmetry properties that
reducible (with six componentQ®Y: QY Q% Qx2 Qy2 are different from those of the electric dipolar operator. In

2 2" 2 fact, and as an example, we will mention the case of ions in
andQ*), so that some cross products betw@¥n, Q”, and octahedral sites, for which the three components of the dipo-

2 .
Q* are nonzero, the same as some integrals of tydex() |ar transition moments transform accordingTg, . In con-
derived from those nonvanishing cross termgRsR @) trast, of the five components of the quadrupolar transition
mentioned earlier. For the purpose of later calculations, anoments, three transform according to the symmetry species

moﬁﬂ@ﬂ@ﬁ%@] 19
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Ty (Xy, yz and xz), while the remaining twoz® and x? corresponds to the_ average fraction of §ite.s actuglly occupied
—y?) do so according t&,,® leading to a different behav- by chromophores in the case of nn?(gstmchmmetnc crystals of
ior when applied to the calculation of transition moments.relative concentrationX, [n=Xn""(0<X<1)]. In turn,
This point will be explained with a specific calculation ex- n/"**is the maximum number of chromophores that the crys-
ample in Sec. V. Similarly, the anisotropic character of thetal lattice can contair(i.e., a crystal withX=1) and the
electric quadrupolar operator transforms, moreover, the intefunction Ag(X,Wt) includes all the information related to
action geometric factors into local parameters which weighthe effect of the statistical fluctuations in the chromophores
the product between components of the quadrupolar transpopulation,Anffr)n, in the actual crystal.

tion moments. Certainly, in a detailed calculation of the rates Under the considerations of the crystal model, and in the
Wpa, each contribution must be scaled by a product of paanalyzed cases, the analytical estimation of an effective
rameters that accounts for the properties of the mediim transfer rate at a macroscopic scalenWpa(MRP) =Keg
electric constantand other factors, in agreement with Dex- leads to the following:

ter's pioneering work.

d_d_Zﬂ'ffD(w)fA(a))de 6)
IV. EFFECTIVE ENERGY-TRANSFER RATE eff h(RY)® 4
AND THE DECAY CURVES RY\ 6
Having shown the intrinsic anisotropy of the electric X[E E nP""‘WIZIM“’IZ(R—é) 935¢(|)},
qguadrupole transition momenta, a realistic relaxation rate ad | !
from the excited states must be established. This is achieved (229
by adding contributions t&Wp 5 [Eg. (13)] over all possible
orientations and distances between donor ions and the set of | 4, 27/ fp(w)fa(w)dw (8
acceptor ions in the crystal. This procedure has been de- “eff — h(RY)® 4(8)
scribed in previous papef$;?® and their most relevant as- o
pects are summarized in this section. s121masi2| RL| oea
The crystal model is based on an “angular class” struc- X[SEQB Z $ ™ uf%Q E|Z(R_P) 9dq B(')],
ture to allow counting the acceptor ions that surround a do- '
nor ion. For a stoichiometric-type crystéh which the al- (22b)
lowed crystallographic sites are occupied exclusively by
chromophores an angular class is defined as the set of ac- q.qzzwffD(w)fA(“’)d“’ X7(10)
ceptor ions that have the same angular orientation with re- eff h(R?)lO
spect to the donor ion. For cubic lattices, it can be immedi- g\ 10
ately shown that each of those angular classes is formed of % 2 2 S el QeB|2| Q9|2 &
shell subclasses made mfmembergwith m— ) located at oEye 16 7 RY

increasing distances, as a result of periodic translations
within the crystal for a given angular orientation. The firs.t y aﬁ_yg(l)J (220
member of a shell subclass is the closest acceptor ion, which 9qq :
is at a distanceRf and which we have called the “generator ) ) ) ) ) _
of thelth angular class.®?*Certainly, the remaining mem- [N the case of dipole-dipole interactions in cubic systéms,
bers of a shell subclass correspond to crystallographic poinil interaction is isotropici.e., it is easy to decouple elec-
whose position with respect to the donor ion Rj,,  tronic and geometrical factorand Eq.(223 is reduced to
—mR. ’ K& =XZ(6 oy 0)Lado); @ compact final expression which is
In this same approach it has been shown that the probabift function of the transfer rate for the nearest-neighbor donor-
ity for the donor ion system to continue in an excited stateacceptor pair,w%‘i\(o); the relative concentration of chro-
for all t>0, after the excitation, is given by the general for- mophores in the latticeX; the Riemann’s zeta functiof(6),
malism which accounts for the translations in the shell subclasses;
and a lattice parametéyyqoy Which includes exclusively the
_ geometric properties of the interacting chromophores.
7+§|: NWpa(mRY) |t|, In general, thek. transfer rates are referred only to the
(20) properties of the angular class generators. d&arand g-q
interactions, a further simplification results from the analysis
where of the properties of the term&Kf/RY)°g(l) in Egs.(22b and
N (220. Since the higher-order interactio(s=8 and 10 can-
D (i) cel out very rapidly with distance, it is easy to show that the
Agtaf X, W) = N_D Zl ex % _tAnI,mWDA(ng)) : summations ovel converge rapidly and, for practical pur-
. ' (21) poses, they do not differ significantly from its first members
[i.e., those evaluated in the first and second angular classes
Since the probability(t) is directly proportional to the time (I=1 and 2]. This is shown with an example in
evolution of the intensity of the luminescence due to theAppendix A.
relaxation of the excited states, then E20) can be related In the d-q and g-q cases, the geometric factors cannot be
directly to the experimental information. In that equatiop, added together directly to give a global magnitdds in the

p(1) = Aga X, W)* EX[{ -
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d-d case in cubic systemsso that they must be retained as (X—X?)t?

local properties characteristic of each product of the compo- Ada( X,Wt)=1 1+ o (20[WgA1?
nents of multipole transition momenta { «B) and (@8 '

—y6), respectively. In this way, restricting the summation X(1—X)(1-2X)t3 (3)
to|=1 and 2 and defining the global energy transfer rate at - 3 {(30[WEA]

a microscopic scal®Vp s, thenkgs in each case is
+[(X(1—=X)—6(1—X)?X?]

ZWIfD(w)fA(w)dw t4
ke = XZ(B)WE A= 7 (RD)® £3X(1- X2 ( ) [WERT +
RY\® (26)
Zpma ap <_1) a1
[szaﬁl—z s ) Gaq (L)) where, for instance, a representative expression for the
(233 [Wpal® parameters fog-q interaction is
27 fp(w)fa(w)dw
-97(2) —
) 27 fp(w)fal)dw [Wia1?= 510
= XEOWBI=XE(10 =7 oo MR
9 X 2 T [Q Q7 gss " (1)]?
% E I_E 1_6n|max1Qa5|2|Qy6|2 af,yé
aB,ys 1=1,2 (27)
y R_% 10 ap=3() (23 Appendix C includes othdWp,]™ parameters. Rigorously,
RP Yaq ' the effect of the anisotropy produces a very complex expres-

sion for Ag.(X,Wt); however, for simplicity it was pre-
On the other hand, the statistical term for fluctuationsferred to leave itin reference to average properties of the first

Al X,W1) [Eq. (21)], may be rewritten in the form of an angular class. The error that this introduces is marginal and
expanded McLaurin series: does not change the shape of the calculated decay curves.

Finally, since the higher-order multipole interactions have
1 Mo a shorter range than those of the dipole-dipole type, a simple
_ = _ calculation is made, analyzing only the first two angular
Asal X, WO = Np Zl [ tE An, mWoa(mR?) classes(I=1 and 2 for the cubic lattice of the elpasolite
) type, CsNaY;_,Ln,Clg. Figure 2 shows a comparison be-
(J) tween the shape and slope of the decay curves ded),
2 An WDA(mRQ)) (d-q), and @-q) processes, with identical values b, ,
3 showing that the differences between the shapes of the
n J multipole-multipole interactions studied are small. More-
| over, for large energy transfer ratgsig. 2(b)] it is impos-
sible, in practice, to distinguish between each decay curve.
This behavior is due solely to the statistical effect of the
actual chromophores population in the crystal system, and it
is in contrast with the discussions of a series of WOR.

(2 An{l WpA(mRP)

(29)

It has been shown that the first-order contribution in this;
series is identically zer® so that only the higher-order con-
tributions inA (X, Wt) establish its temporal behavior. As-
suming a binomial statistical contribution for the population V- CALCULATION OF THE CROSS-RELAXATION
of chromophores in the lattice, in the dipole-quadrupole case ("G4, "He)—(*Hs, “Hy) IN Cs;NaYClg:TmClg

we have One of the possible examples of energy-transfer processes

due to an electric quadrupole-electric quadrupole interaction
a4 (X—X?)t? 2 is that of the cross-relaxation of Fm ions (G, 3Hg)
Agaf X, WH =11+ T((lﬁ)[W%A] —(®Hs, ®H,) in Cs,NaYClg:TmClg. Interest in this particu-
lar system and process of energy transfer is due to the high-

B X(1—-X)(1—2X)t3 symmetry properties of the lattice, which will make it pos-

{(2a[wWg®

31 sible to show more clearly the importance of the anisotropic
os effect of the quadrupole operator. This example has been
+[(X(1=X) = 6(1—X)"X“] recently studied by Chua and TanR@r.
§(3 )t4 Partially considering their calculations, the magnitudes of
+3X2(1-X)2 [wga@ the five componentsQ®|2, |Q¥72, |Q¥72, |Q~¥’|2, and

|Q?32 can be established immediately both in the donor as
(250 well as in the acceptor ion. Using tli&1 wave function basis
and assuming pure states, the squares of the matrix elements
and, for the quadrupole-quadrupole, [(1|HL%92)]? can be calculated in terms of the products
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(a) ties in the higher order multipole interactions, and this results
in a change of the magnitude ¥f3 ! . We could predict that
differences should be larger in systems of lower symmetry
where the anisotropic effects are stronger.

LogflIo] -4

VI. CONCLUSIONS

d-q

8 a-q The crystal model has been extended to account for the
most relevant higher-order electric multipole contributions

0 0.0002 0.0004 0.0006 0.0008 0.001 which are responsible for the energy-transfer processes in

time (s) crystalline phases doped with luminescent ions that are rela-

tively separated. This results in the predominance of long-
range interactions, and permits to neglect other short-range
interactions such as direct exchange, studied in the parallel
paper®

Even in crystals with high symmetry, and in contrast with
the purely dipolar case, the electric quadrupole operator in-
troduces an expected decrease in the isotropicity of the inter-
action which is observed in both electronic as well as geo-
metric contributions to the energy-transfer rates. Similar
effects have been observed in the parallel study on energy-
transfer rates induced by direct exchange interaction, al-
-7 -7 -7 -7 -6 though the specific mechanisms are very different. For in-
’ stance, this study shows clearly how the geometric factors of
the electric dipole—electric quadrupole and electric

FIG. 2. Typical shape of the decay curvesa) _quadrupole—electric qqadrupole interactions depend explic-
y=4x10*(s’) and W%—E(o):2'4xlo4(sfl) and (b) y=4 ity on the_angular orientatior{6,¢) between thedonor-
X 107 (s andW g, =2.4x 10° (s°Y), for different relative con- acceptorpair, and become local parameters that have to be
centrationsx of optical centers. Note the difference in the scale of €Stimated carefully. These geometric factors have been men-
the plots. tioned ambiguously in some work$,and they have been

defined analytically only in this paper, to our knowledge. In

between component*?. For example, for the 1G,)  contrast, as a result of the anisotropy, the geometric factors

Log{llo]

time (s)

—(3H5) transition in the donor ion, we find the ratios in direct exchange energy transfer are also local parameters
but are related to the relative orientation of the electron
=y2 2,147 12,109 [2-]QYZ |2-|()*Z |[2—1-1-3.3.3 clouds, which affects the electronic overlap between the in-
|Qd’d | '|Qd’d| '|Qd’d| '|Qd’d| '|Qd’d| _1-§-§-E-E teracting ions. P
while for the GH,)— (®H) transition in the acceptor ion, ~ The anisotropy of the electric quadrupole operator leads
the components take relative values to a higher degree of complexity in the crystal model expres-
sions, because the process of summation and averaging of

|Q;ZTVZ|ZZ|Q§Z|21|Q:§r|21|Q§Zr|21|Q;; 2-1:2:2:0:0. interactions over angular orientations and distances is more

cumbersome. However, with the approximations mentioned
In the first place, this shows the strong variations that carn this study, the expressions obtained for the decay curves
appear in the products between componenrig{ 5y) of  show full formal agreement with those that correspond to the

both quadrupole moments. dipole-dipole mechanism previously established by the
A complete calculation of this process consideringauthor?®24
the first two angular classes gives a value Wi}/ This approach has the advantage of expressing the tempo-

=2.42x 1 (s} for the energy-transfer rate. Appendix B ral evolution of the decay processes in terms of average pa-
shows details of the calculation. This result is more tharrameters that have a precise physical meaning that is known
twice the one calculated in Ref. 20, and this is due to the wajrom the synthesis dataX) or are easily calculated

in which the crystal model establishes the geometrical effectfom the crystallographic informatioigeometric factors

of the interaction and global properties. The authors of Refg(:,”“#)(1) andg{**~?(1)]. The only parameter that is ad-
20 did the calculation using a shell model, considering jusjustable from the experimental information is the global
one generic donor-acceptor pair in each shell and multiplyenergy-transfer rate at a microscopic scai,,, which,

ing this result by the number of ions in each shell. Rigor-however, can be calculated from the theory, as has been il-
ously, the anisotropic effect of the electric quadrupole operalustrated with a particular example in Sec. V, based partially
tor causes that the geometric facttgé‘ff"‘”(l) change on the results of Chua and Tanrfér.

their magnitude significantly depending on the angular ori- Since the effective energy-transfer riig [see Eqs(20)
entation between the donor ion and the acceptor ion, eveand (22)], is a macroscopic magnitude and additive to the
within the same angular classas can be verified from the radiative decay rate, the energy-transfer processes produce
tables included in Appendix B. Thus, in spite of the system’srather rapid relaxations from the excited states. Using the
high symmetry, the geometric factors become local properwell-known results of Inokuti and Hirayantéjt has become
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common to differentiate the multipolar mechanism of the

transfer processes from the shape of the decay curve, with ACKNOWLEDGMENTS

the one corresponding to quadrupole-quadrupole interactions

mentioned as faster and sharper for early relaxation The author gratefully acknowledges the financial support

intervals:—3*210 of Fondecyt under Grant Nos. 1990057 and 1960980, and
The results summarized in Fig. 2, where the condition ofe|pful discussions from Professor Peter Tanner during a

equal magnitude iMWpa(o) for the three types of electric st at City University, Hong Kong.

multipole interaction for several system compositions has

been enforced, indicate that there are no sensible differences

between the shape of decay curves of the different multipolar

order processes. Inspecting E¢&2) and(23), it is obvious

that only the values of Riemann’s zeta functiofs),

change(6)>{(8)>{(10), and therefore the magnitude of

the effective energy transfer rates decreases very slightly

with an increase in the order of the multipolar interaction: ) ) )

K9>89 The functionA ga(X,Wpa) and its temporal It is easy to show with fmaexample that.the geometric

evolution is also affected, but in a somewhat different sensdactors gii”*?(1) and gis*~7?(1) for the first angular

although the Riemann zeta functions involved inclass are the dominant terms in these summations. In fact,

Agaf X,Wpa) are very similar[for instance,/(12)=/(18)  choosing the X—xy) component of the dipole-quadrupole

=/[(20)], the differences of shape are mainly related to theinteraction, the analytic form oggxq-xw is as follows:

magnitude of th¢ Wp,]®) parameters. However, the change

is so small that, in practice and particularly if thp,

energy-transfer rate is large, the curves ovellape Fig.

2(b)]. For smaller energy-transfer rates, there are some dif-

ferences between the shape of the decay cufses Fig. (x=x) )2( ‘x‘ Rf,

2(a)], in such a way that they are more pronounced for the dq =4 1_10$+ZSE R

higher-order interactions, but changes are again small and

not conclusive for the purposes of fitting experimental data

and deciding the order of the multipolar interaction. Thus the

results of this part of the study contradict numerous analysesvaluating for all the ions of the first three angular classes

in the |iteraturel._s'lz'leMoreover, rigorOUS|y, the aSSignment (| =1, 2, and 3 and Considering data on donor-acceptor dis-

of the type of predominant multipolar mechanism by a”aly‘tances(see Refs. 23 and 39n the elpasolite lattice, we
sis and fitting of the decay curves loses its meaning in view)ptain

of the slight differences in shape of the decay curves of one
type or the other seen in Figs(a2 and Zb). These results
point to the importance of theoretical calculations of the, g R\8 R\8
energy-transfer rates to achieve a correct assignment of t)’(&f) Q1) ( _1) QeI(2) ( _1) gL (3)
multipolar mechanism. RY) Jda Rg/ ¥da Rg) da
From the point of view of the crystal model, the only
important information that can be extracted from the experi-1X26 0.062%8 0.012340.444
mental data is the effective energy-transfer fatg, which
can be deduced from the initial slope of the decay curves. In
fact, if t—0, thenA g, (X,wt)—1 and and thegf;;’xy)(l) parameter alone accounts for 98.1% of
the total k—xy) component of the d-q interaction. Adding
contributions up to the second angular classes makes it pos-
dinp(t) sible to account for approximately 99.9%. This criterion is
—ar | =~ (rtken)=—[y+X{(s)Wpal, rather general, with slight variations for other components of
=0 both (¢—apB) for d-q and (@B— yd) for g-g, and allows
simpler formalisms for the global transfer rates.

APPENDIX A: AN APPROXIMATE CALCULATION
OF THE EFFECT OF DISTANCE IN
2 e apZ i HPIQ PP (RYRY) Pgfy P (1)

$=6,8,10

is true.
With y known (from very slightly doped crystals and
with data for a series of increasingly doped samglsit is
possible to deduce the global energy-transfer rate and com- _ q )
pare it with the theoretically calculated magnitudes. The calculation okeyf' andAgi(X,WY) in the case of the
Leaving the multipolar transition moments as the only€Nergy process of transfer between Tmions in
parameters, the method seems to be robust and easy to useGNaYCls:TmCls is made considering the first two angular
a realistic estimation of the energy-transfer rates for solidclasses and pertinent crystallographic ddtZhe nonzero
state compounds. geometric factors for the angular clas$esl,2 are

APPENDIX B: CALCULATION OF THE g-q
ENERGY-TRANSFER PROCESS IN CsNaYClg:TmCl g
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=1 (12 acceptor ions, four in each Cartesian pldnle=2 (six acceptor ions, two in each Cartesian

R=a/v2. Typical Cartesian coordinatg®/,|R,|,|R,|). axis.R=a. Typical Cartesian coordinate§R(|,|R,[,|R,|).
(i) planex-y: (a/2,a/2,0) (i) x axis: (@,0,0)
a; =361 a3 a3 =256 =
géé-yz: 36 g(z —y2)—(x2-y ):s_zg ggé-yz: 256 g(x ~v?) (xz—yz)zsl_el
Jaq =36 Ogq =256
YZ-XZ__ - _ 2 (22
J4q =100 géa (x? ):‘5_1 géa (XP—y ):31—25
gxy zz_ 2725
(ii) Planey-z (0,a/2,a/2) (i) y axis: (0,0)
ngXy_36 gééZZ 13526539 ng Xy 256 ggaz_yZ)_(xz_YZ): %
Jgq =361 grz v =225/16 9Y5Y?=256
XZ-XZ _ 2_ 2y _(y2_\2 XZ-XZ__ _(y2_\2
5 =36 gy VI | g 256 AR
gyZ zZ__ ZTZS gééZZ %}
XY-XZ__ _(x2_\2
Oqq =100 gz (x*=y%) _ 5465
(iii) Planex-z (a/2,0,a/2) (iif) zaxis: (0,0a)
g)c(])é-xy:36 gééZZ 13256689 gégxy: 16 gééZZ 1%73
yz-yz_ —y? yzyz_ (P-y?)—(x2—-y?) _
9aq —36 Jaa o=y - g8 9aq~ — 256 ng TRr=1
XZ-XZ__ 2_ 2y _(y2_\2 XZ-XZ _
Oqq —361 98; y9- -y - soa Oqq =256
gyz zz__ 2_265
XY-XZ_ _ 2
940 =100 géé (x? ):%665

In this way, the different contributions i} are established, forming the products

RY)\ 10
DD IQ”‘BIZIQV’SIZ(R—;) W),
I

aBys1=1,2

Taking the magnitudes for the integral of the spectral form functions, dielectric constant and field correction factor from Chua
and Tanner’s work? this finally gives a value ok%f=2.42x10°s %,

APPENDIX C: LIST OF THE [Wpa]® PARAMETERS

The[Wp,]™ parameters arise from the statistical tekig,{(X,Wt), and the first k) =2,3,4 parameters have the following
analytical expressions:

: 4m?(Jfp(@)fa(w)dw)? ma -
e - e R SR Ee)
8m(Jfp(w)fa(w)dw)®

e - e R MR
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1674(Sf )fa(w)dw)? .
LT, e P ST
167 ([fp(w)fa(w)dw)
e [E (0770 3 | 71Q41? ggq“ﬁ(m].
For theqg-q interaction,
47([ fo( @) fa(0)dw)?
e - S e QU Q e
87(J () Falw)dw)?
(WERI == s g {BEY T & 1Q1Q g5 W(l)]?’],
167*([fp(w)fa(w)dw)?
wggyea="" LR [ﬁEy & |QF|Q g5 7 1)]4},
167([ () fa(0)do)*
[WES1 2= ;f(ﬁ%)io“’ - [a;w( 792 3 [QA[2 lovﬁlzgqq“ﬂu)]]

Evaluating these expressions for th&(, 3Hg)— (PHs, 3Hy)
to k=4, the following values are obtained:

[W31? (s79) [WEA1®) (s79)

(g-q) energy transfer process in the irelpasolite lattice up

[WEAAD (s7%) [WEA142) (s7%)

2.31x< 10’ 6.90x 10%°

1.81x 101 7.26x 1071
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