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Crystal model for energy-transfer processes in organized media: Higher-order electric
multipolar interactions
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The study of the energy-transfer processes is extended, within the conceptual framework of the crystal
model, to the electric dipole-electric quadrupole and electric quadrupole-electric quadrupole interactions. The
formalisms for the energy-transfer rates are deduced, applying a mixed scheme of Cartesian tensors which are
used to establish the geometric aspects of the interaction, and spherical tensors for the electronic part. The
dependence of these transfer rates with respect to the geometric factors is discussed, and they are compared
with the electric dipole–electric dipole case. In general, and as a consequence of the intrinsically anisotropic
character of the quadrupolar operator, the analysis shows formally that those rates are highly anisotropic,
suggesting a more careful calculation and interpretation of the transfer rates in organized media, like crystalline
phases. This type of analysis shows the faults of the models currently used and cited in the literature, and the
importance of the anisotropic effect is illustrated with an application in elpasolite type lattices doped with Ln31

ions which occupy centrosymmetric sites.@S0163-1829~99!12835-2#
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I. INTRODUCTION

In the literature of the last decades an important amo
of work related to energy-transfer processes in various ty
of solid-state compounds has been reported, especially t
related with experimental studies of these types of effect
a large variety of crystalline systems containing luminesc
centers or chromophores such as ions of transition me
lanthanides, and actinides.1–6 At the same time, complemen
tary theoretical models explaining those observations w
introduced with the pioneering work of Fo¨rster,7 and contin-

ued later by Dexter,8 Inokuti and Hirayama,9 and others,10–13

whose main purpose was to estimate the ratesWDA of the
energy-transfer processes. With varying degrees of ac
tance, all these models have been applied to a large varie
crystalline systems, including those in which the ions
found in centrosymmetric as well as noncentrosymme
point symmetry sites.14–17 In most cases it has been me
tioned that such models can explain correctly the obse
tions. In particular, it is interesting to note that the model
Inokuti and Hirayama9 has been used extensively in the la
three decades, even though its conceptual limitations w
rapidly acknowledged after its publication.18 Later models
have not improved that aspect sensibly, since the main c
tradiction is that they are based on a sum of interacti
between ions that assumes a continuous distribution of lu
nescent centers within the system. This is certainly not
case in crystalline media, where the ions are distributed
very specific positions in the lattice. This points to the ne
to revise those models and formulate alternative ones
can remove those controversies.19–22

The generation of more correct formalisms for the stu
of energy-transfer processes has had limited success in
vious works of this series,23–25 devoted to the developmen
the crystal model, because it was just applied to dipo
dipole interactions. This model considers in a realistic w
PRB 600163-1829/99/60~12!/8575~11!/$15.00
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both the quantum aspects as well as statistical details of
interaction between thedonor ions and theacceptor ions
forming the crystalline system, and has led us to extend
validity by studying other types of interactions. Thus a
multaneous paper26 tackles the formal analysis of process
mediated by direct exchange interactions, which must
relatively important in systems that have very close toget
optical centers. However, if the crystallographic arrangem
shows greater separations between the interacting atoms
longer-range interactions, typically electric and/or magne
multipole interactions, should predominate.

The theoretical estimation of the transfer rates involv
the calculation of interactions between a genericdonor-
acceptorion pair. At the initial instant,t50, the first ion is in
an excited state, while the second is in the ground state o
a lower excited state. The relaxation of the donor ion and
transfer of energy to the acceptor ion can occur in sev
ways; however, for the purpose of this study, and taking i
account the properties of the particular lattice chosen as
example, the most important are electric multipolar, ma
netic dipolar, and phonon-assisted energy transfer.

The point symmetry site of each one of the chromopho
is an important aspect for finding the effective contributio
to the global energy-transfer rate. In the case of ch
mophores at centrosymmetric point sites, the selection r
predict that the most important contributions would be ma
netic dipole–magnetic dipole ~MD-MD !, electric
quadrupole–electric quadrupole~EQ-EQ! and electric
dipole–electric dipole by a phonon-assisted mechanism o
the vibronic type~EDV-EDV!. The theoretical treatment o
phonon processes has been attempted by some authors~see,
e.g., Refs. 27 and 28!, leading to a basic formalism that i
valid only in restricted cases.29 Energy-transfer processes b
an electric vibronic dipole mechanism can also be cons
ered, but few papers in the literature refer to that probl
from a theoretical standpoint.30

Having treated the problem of the energy-transfer p
8575 ©1999 The American Physical Society



rs
ro
ac
es
on
it
ll

at
sf

-
e
p

th
th
er

ive
m
t

th
f
-

c

a

l
m
ta

ac

r
ple
o

ge

ta
r t
m

e

e

the

ld
cal
ge
the
try,
he

nd
po-
r-

or
ro-

t the
ian,

dis-

c

8576 PRB 60SERGIO O. VÁSQUEZ
cesses due to dipole-dipole interactions in previous pape
this series,23–24 in this paper the analysis is extended to p
cesses that involve higher-order electric multipolar inter
tion mechanisms. The main purpose of the work is to inv
tigate the effect of the introduction of quadrupole transiti
momenta in the energy-transfer rate expressions, since
admitted that the corresponding operator is intrinsica
anisotropic.31 The working hypothesis for this paper is th
this must necessarily lead to anisotropic energy-tran
rates, even for highly symmetric systems~such as that of the
example discussed below!. A similar idea has been consid
ered in the parallel paper,26 which studies direct exchang
interactions. Of course, the mathematical aspects of both
pers are closely related, but differ in the structure of
interaction Hamiltonian for each case, and therefore in
explicit final formalism obtained for the energy-transf
rates.

The interaction anisotropy is an aspect that has rece
little attention in the known models, and in fact most of the
have been proposed as if the medium were isotropic and
electric multipolar interaction depended exclusively on
distance according toR2s, wheres accounts for the type o
mechanism ~s56, 8, and 10 for dipole-dipole, dipole
quadrupole, and quadrupole-quadrupole mechanisms,
spectively!. The transfer rate is usually expressed asWDA

5C(s)3R2s, where all the angular, geometric, and ele
tronic dependencies are included in the parameterC(s). A
formal expression for this parameter is

C~s!5e2 (
k1 ,k2

~2k112k2!!

~2k111!! ~2k111!! F(
q1

z^a8uDq1

k1ua& z2G
3F(

q2

z^duDq2

k2ud8& z2G @s52~k11k211!#, ~1!

and in its calculation some approximations have been m
that include averages over spatial orientations and 3-j sym-
bols. As a result of that,C(s) is considered identical for al
the chromophores, and is treated as a parameter whose
nitude can be deduced from the fitting of the experimen
data.1,27

Recently,23–24 the crystal model has been used to char
terize the environment around a donor ion~arbitrarily located
at the origin of the coordinates!, defining a set of angula
classes and shell components that account for the com
arrangement of acceptor ions in the system. Under the c
dition of a binomial type statistical distribution~i.e., a ran-
dom distribution of luminescent centers as substituents
dopants in the optically inert crystal lattice within the ran
of excitation energies of interest!, it is possible to carry out a
statistical analysis under any doping condition in the crys
lattice, and obtain an energy-transfer rate averaged ove
whole crystal. This makes it possible finally to obtain a co
pact formalism for the effective energy-transfer rate.

The general expressions are exemplified through the
ergy transfer between lanthanide ions Ln31 in the elpasolite-
type lattice, a model system that has been thoroughly inv
in
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tigated from the experimental standpoint and has been
target of theoretical interest in recent years.32–34

The particular choice of this cubic system has a twofo
justification: In the first place, the distance between opti
centers is relatively important, allowing very short-ran
contributions such as direct exchange to be neglected. In
second place, structurally the system has high symme
which allows the effect of the interaction anisotropy on t
energy-transfer rates to be seen more clearly.

II. INTERACTION POTENTIAL

Using a general type of electrostatic perturbation, a
within a model of independent systems, the various multi
lar contributions are specified initially by means of their Ca
tesian operators, coupled to a symmetric tensor~also Carte-
sian! that contains the system’s geometric information. F
the purpose of this study, and considering a situation of ch
mophores separated by sufficient distance as to neglec
contributions due to exchange, the perturbation Hamilton
H8, of the interacting electronic densitiesD andA, is usually
expressed as35

HDA8 5(
j 51

s

(
i 51

t e2

r i j

5(
j 51

s

(
i 51

t e2

RF11S urA j2rDi u212R•~rA j2rDi !

R2 D G1/2,

~2!

where conventional subscripts have been used for the
tances shown in Fig. 1. From Eq.~2! the multipolar expan-
sion is easily found, because the conditionR@r Di ,r A j , is
satisfied for sufficiently separated chromophores.

In what follows, and for simplicity, the different electri
multipolar interactions will be referred to as:d-d ~dipole-
dipole!, d-q ~dipole-quadrupole!, and q-q ~quadrupole-
quadrupole!. In vector notation, they correspond to

FIG. 1. Typical spatial arrangement ofA andB interacting elec-
tronic density charges.
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HDA8d-d5R23H S (
i 51

s

erDi D •S (
j 51

t

erA jD 23(
i 51

s

(
j 51

t

~erA j•R̂!~R̂•erDi !J , ~3!

HDA8d-q5 3
2 R24H (

i 51

s

(
j 51

t

@e~rDi•rDi !25e~rDi•R̂!~R̂•rDi !22e~rA j•rDi !#~R̂•erA j!2(
i 51

s

(
j 51

t

@e~rA j•rA j!25e~rA j•R̂!~R̂•rA j!

22e~rA j•rDi !#~R̂•erDi !J , ~4!

HDA8q-q5 3
4R

25H (
i 51

s

(
j 51

t

@e~rA j•rA j!e~rDi•rDi !25e~rDi•rDi !e~R̂•rA j!
225e~rA j•rA j!e~R̂•rDi !

2220e2~rA j•rDi !~R̂•rA j!

3~R̂•rDi !135e2~R̂•rA j!
2~R̂•rDi !

212e2~rA j•rDi !~rA j•rDi !#J . ~5!
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In this notation,R̂5R/R is a unit vector that accounts for th
direction of interaction between both multipoles. The exp
sion has been truncated because it is expected that th
maining higher-order multipoles will not contribute signifi
cantly, particularly if the distances between the opti
centers are relatively important. However, they could be e
ily deduced from Eq.~2!. The formal attack that will be
followed allows Eqs.~3! and ~5! to be expressed in a mor
compact form in which the multipole operators are coup
by means of a second-rank symmetric tensor which sh
the geometric dependence of the interaction, of a form si
lar to that of the already known dipole-dipole case.19,23,25For
the sake of completeness, this latter case is presented b
in the equation

HAB8d-d5R23$mD•C̃dd
•mA%, ~6!

where the second-rank symmetric coupling tensorC̃dd is es-
tablished by the following matrix elementsCab

dd ~Refs. 19
and 23!:

Cab
dd 5H dab23

RaRb

R2 J , ;a,b5x,y,z. ~7!

From Eqs.~4! and~5!, the multipolar contributions related t
the (d-q) and (q-q) terms can be expressed in a simil
way:

HDA8d-q5 3
2 R24H (

i 51

s

(
j 51

t

R̂•$Q̃Di•C̃dq
•mA j%

2(
i 51

s

(
j 51

t

R̂•$Q̃A j•C̃dq
•mDi%J . ~8!

In this equation,Q̃ is the tracelessformalism of the quadru-
polar symmetric tensor,36 with the following six components

Qab5e$rarb2 1
3 r2dab%, ;a,b5x,y,z. ~9!

Similarly, the symmetric coupling tensorC̃dq in Eq. ~8! has
elements of the following form:
-
re-

l
s-

d
s

i-

fly

Cab
dq 5H 2dab25

RaRb

R2 J , ;a,b5x,y,z. ~10!

By inspecting Eq.~8!, it is seen that it considers a pair o
‘‘mirror image’’ contributions depending on the ion in whic
the electric dipolar or electric quadrupolar transition is loc
ized. Thus, in specific examples, it is necessary to determ
whether one of these contributions or both of them are c
sidered, depending on the degree of complexity of
energy-transfer processes.

In the same way, the quadrupole-quadrupole interac
@Eq. ~5!# is straightforwardly expressed in terms of coupl
quadrupolar tensor operators:

HDA8q-q5 3
4 R25H (

i 51

s

(
j 51

t

R̂•~Q̃A j•C̃qq
•Q̃Di !•R̂

12(
i 51

s

(
j 51

t

Tr~Q̃A j•Q̃Di !J . ~11!

The first term on the right of this equation corresponds to
electric quadrupolar operators coupled by a geometric ten
of the same structure as in the previous cases, but with
additional dependence inR̂2. The algebraic structure of thi
product is essentially anisotropic, due precisely to the dou
dot product withR̂. The second term corresponds to a co
tracted second-rank tensor that shows the direct interac
between the components of the operators located on e
ion, which is particularly interesting because it correspon
to an isotropic contribution independent of the relative po
tions of the donor-acceptor pair.

The Cab
qq elements of the symmetric coupling tensorC̃qq

are the following:

Cab
qq 5H 220dab135

RaRb

R2 J , ;ab5x,y,z. ~12!

III. ENERGY-TRANSFER RATES

The energy-transfer rateWDA between two chromophore
D andA, one acting as a donor~D! and the other acting as a
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8578 PRB 60SERGIO O. VÁSQUEZ
acceptor~A! of energy, can be written according to Ferm
golden rule,

WDA5
2p

\
z~d8auHDA8 uda8!z2E f D~v! f A~v!dv, ~13!

whereHDA8 is the electrostatic interaction potential that co
nects two terminal states: an initial stateu1&5ud8a&
5ud8&ua& and a final stateu2&5uda8&5ud&ua8&. Here, the
primed labels mean excited electronic states. The funct
f D(v) and f A(v), correspond to the spectral form function
of the ionsD and A within the frequency rangev of the
relevant transitions.

Since according to Fermi’s golden rule the energ
transfer rates depend on the squares of the matrix elem
andHAB8 includes the three predominant contributions me
tioned earlier, there will be pure (d-d), (d-q), and (q-q)
processes. The first case was analyzed in great detai
cubic lattices in previous papers,23,24 achieving, for cubic
systems, a compact formalism,

z^1uHDA8d-du2& z25R26umd8du2umaa8u
2GDA

dd . ~14!

This is a very simple equation in whichGDA
dd is the global

geometric factor of the interaction, and is the result of
symmetry of the lattice. The explicit form of that factor fo
the dipole-dipole case is

GDA
dd 5

1

9 H (
a,b5x,y,z

~Cab
dd !2J . ~15!

It should be noted that this is the result of the properties
the cubic crystals, for which it is true thatumxu25umyu2
5umzu25 1

3 umu2. Work on crystals having different symme
tries is underway.

With respect to the dipole-quadrupole contribution, fin
ing the analog of Eq.~15! is less direct. Using reasons ide
tical to those given earlier, and taking advantage of the h
mitic and real character of the components of t
quadrupolar tensor in Cartesian coordinates,36 a derivation of
the squared matrix elements is easily deducible. In ma
notation we obtain

z^1uHDA8d-qu2& z25 9
4 R28$~a* •R̃•a!%, ~16!

wherea5Q̃D•C̃dq
•mA is, obviously, a Cartesian vector, an

R̃5(R̂* R̂) is a second- rank unit tensor. This product fo
lows the same behavior of Eq.~6!, although the greater com
plexity of the mechanism is reflected in the algebra. Wo
with Eq. ~16! must take into account two aspects that dist
guish this case from that of thed-d interaction: In the first
place, it can be shown that the product (a* •R̃•a) includes
not only diagonal quadratic contributions, but also some
nonzero cross-product-type terms (ab* R̂bR̂gag), ;bÞg
5x,y,z. Second, it is necessary to stress that the Carte
representation of the quadrupolar tensor is symmetric
reducible~with six componentsQxy; Qyz, Qzx, Qx2

, Qy2
,

andQz2
!, so that some cross products betweenQx2

, Qy2
, and

Qz2
are nonzero, the same as some integrals of type (ab* ag)

derived from those nonvanishing cross terms (ab* R̂bR̂gag)
mentioned earlier. For the purpose of later calculations
-
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more appropriate form should give the expressions in te
of the five-component irreducible real base~Qxy; Qyz, Qzx,
Qx22y2

, and Qz2
!. This can be done easily by writing th

Cartesian quadrupolar operators in terms of spherical tens
C2q5A4p/5Y2q , according to Griffith’s convention.37 This
makes it possible to simplify the estimation of the electro
part of the calculation and to express the squares of the
trix elementsx2 andy2 of the quadrupolar operator and cro
products as combinations that includez2 and (x22y2) com-
ponents; for example, forQx2

,

z^1uQx2
u2& z25 1

4 z^1uQzzu2& z21 1
4 z^1uQx22y2

u2& z2. ~17!

A final relevant aspect in this analysis of the components
the quadrupolar transition moment is the one that refers
the different weight that each one has in the total transit
moment. In fact, the squares of the matrix elements t
different values even in high-symmetry systems such as
Ln31 ions in octahedral point symmetry, as has been sho
by Chua and Tanner.20 This leads to drastic changes in th
form of the geometric factor in the dipole-quadrupole cas

Finally, Eq. ~17! is rewritten as

z^1uHDA8d-qu2& z25R28umaa8u
2

3H 3

4 (
ab5xy,xz,yz,

z2,x22y2

uQd8d
ab u2~gDA

dq~ab!!J ,

~18!

where uQd8d
ab u2 are the five components of the quadrupo

transition moment for the transitionud8&→ud& in the donor
ion, andgDA

dq(ab) are the particular geometric factors of ea
dipole-quadrupole interaction component. The converse t
accounts for probableud8&→ud& electric dipole andua&
→ua8& electric quadrupole transitions.

The same procedure is used to express the term co
sponding to the quadrupole-quadrupole interaction, wh
would have matrix elements

z^1uHDA8q-qu2& z25R210H 9
16 (

ab,gd5xy,yz,xz,
x22y2,z2

3uQd8d
ab u2uQaa8

gd u2gDA
qq~abgd!J . ~19!

The number of geometric factors, both for (d-q) as well as
for (q-q) interactions, is important, so a detailed list may
requested from the author.

Summarizing, and by inspection of the previous equ
tions, the anisotropic properties of the energy-transfer p
cesses that involve higher-order multipoles can be obser
In the electronic part, this is reflected in the fact that t
electric quadrupolar operator has symmetry properties
are different from those of the electric dipolar operator.
fact, and as an example, we will mention the case of ions
octahedral sites, for which the three components of the d
lar transition moments transform according toT1u . In con-
trast, of the five components of the quadrupolar transit
moments, three transform according to the symmetry spe
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T2g ~xy, yz, and xz!, while the remaining two~z2 and x2

2y2! do so according toEg ,38 leading to a different behav
ior when applied to the calculation of transition momen
This point will be explained with a specific calculation e
ample in Sec. V. Similarly, the anisotropic character of t
electric quadrupolar operator transforms, moreover, the in
action geometric factors into local parameters which wei
the product between components of the quadrupolar tra
tion moments. Certainly, in a detailed calculation of the ra
WDA , each contribution must be scaled by a product of
rameters that accounts for the properties of the medium~di-
electric constant! and other factors, in agreement with De
ter’s pioneering work.8

IV. EFFECTIVE ENERGY-TRANSFER RATE
AND THE DECAY CURVES

Having shown the intrinsic anisotropy of the electr
quadrupole transition momenta, a realistic relaxation r
from the excited states must be established. This is achie
by adding contributions toWDA @Eq. ~13!# over all possible
orientations and distances between donor ions and the s
acceptor ions in the crystal. This procedure has been
scribed in previous papers,23–25 and their most relevant as
pects are summarized in this section.

The crystal model is based on an ‘‘angular class’’ stru
ture to allow counting the acceptor ions that surround a
nor ion. For a stoichiometric-type crystal~in which the al-
lowed crystallographic sites are occupied exclusively
chromophores!, an angular class is defined as the set of
ceptor ions that have the same angular orientation with
spect to the donor ion. For cubic lattices, it can be imme
ately shown that each of those angular classes is forme
shell subclasses made ofm members~with m→`! located at
increasing distances, as a result of periodic translati
within the crystal for a given angular orientation. The fir
member of a shell subclass is the closest acceptor ion, w
is at a distance,Rl

g and which we have called the ‘‘generat
of the l th angular class.’’23,24Certainly, the remaining mem
bers of a shell subclass correspond to crystallographic po
whose position with respect to the donor ion isRl ,m

5mRl
g .

In this same approach it has been shown that the prob
ity for the donor ion system to continue in an excited sta
for all t.0, after the excitation, is given by the general fo
malism

r~ t !5Dstat~X,Wt!* expF2S g1(
l

n̄lWDA~mRl
g! D tG ,

~20!

where

Dstat~X,Wt!5
1

ND
H (

j 51

ND

expS (
l ,m

2tDnl ,m
~ j ! WDA~mRl

g! D J .

~21!

Since the probabilityr(t) is directly proportional to the time
evolution of the intensity of the luminescence due to
relaxation of the excited states, then Eq.~20! can be related
directly to the experimental information. In that equation,n̄l
.

e
r-
t

si-
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e-

-
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e-
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s
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ts

il-
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e

corresponds to the average fraction of sites actually occu
by chromophores in the case of nonstoichiometric crystal
relative concentrationX, @ n̄l5Xnl

max (0<X<1)#. In turn,
nl

max is the maximum number of chromophores that the cr
tal lattice can contain~i.e., a crystal withX51! and the
function Dstat(X,Wt) includes all the information related t
the effect of the statistical fluctuations in the chromopho
population,Dnl ,m

( j ) , in the actual crystal.
Under the considerations of the crystal model, and in

analyzed cases, the analytical estimation of an effec
transfer rate at a macroscopic scale( l n̄lWDA(mRl

g)5keff

leads to the following:

keff
d-d5

2p* f D~v! f A~v!dv

\~R1
g!6 Xz~6!

3H(
«,f

(
l

nl
maxum«u2umfu2S R1

g

Rl
gD 6

gdd
«2f~ l !J ,

~22a!

keff
d-q5

2p* f D~v! f A~v!dv

\~R1
g!8 Xz~8!

3H (
«,ab

(
l

3
4 nl

maxum«u2uQabu2S R1
g

Rl
gD 8

gdq
«2ab~ l !J ,

~22b!

keff
q-q5

2p* f D~v! f A~v!dv

\~R1
g!10 Xz~10!

3H (
ab,gd

(
l

9
16 nl

maxuQabu2uQgdu2S R1
g

Rl
gD 10

3gqq
ab2gd~1!J . ~22c!

In the case of dipole-dipole interactions in cubic system23

the interaction is isotropic~i.e., it is easy to decouple elec
tronic and geometrical factors! and Eq.~22a! is reduced to
keff

d-d5Xz(6)wDA(0)
dd Ldd(0) ; a compact final expression which

a function of the transfer rate for the nearest-neighbor don
acceptor pair,wDA(0)

dd ; the relative concentration of chro
mophores in the lattice,X; the Riemann’s zeta functionz~6!,
which accounts for the translations in the shell subclas
and a lattice parameterLdd(0) which includes exclusively the
geometric properties of the interacting chromophores.

In general, thekeff transfer rates are referred only to th
properties of the angular class generators. Ford-q and q-q
interactions, a further simplification results from the analy
of the properties of the terms (R1

g/R1
g)sg( l ) in Eqs.~22b! and

~22c!. Since the higher-order interactions~s58 and 10! can-
cel out very rapidly with distance, it is easy to show that t
summations overl converge rapidly and, for practical pur
poses, they do not differ significantly from its first membe
@i.e., those evaluated in the first and second angular cla
~l 51 and 2!#. This is shown with an example in
Appendix A.

In the d-q andq-q cases, the geometric factors cannot
added together directly to give a global magnitude~as in the
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d-d case in cubic systems!, so that they must be retained a
local properties characteristic of each product of the com
nents of multipole transition momenta («2ab) and (ab
2gd), respectively. In this way, restricting the summati
to l 51 and 2 and defining the global energy transfer rate
a microscopic scaleWDA , thenkeff in each case is

keff
d-q5Xz~8!WDA

d-q5Xz~8!
2p* f D~v! f A~v!dv

\~R1
g!8

3H (
«,ab

(
l 51,2

3

4
nl

maxum«u2uQabu2S R1
g

Rl
gD 8

gdq
«2ab~1!J ,

~23a!

keff
q-q5Xz~10!WDA

q-q5Xz~10!
2p* f D~v! f A~v!dv

\~R1
g!10

3H (
ab,gd

(
l 51,2

9

16
nl

maxuQabu2uQgdu2

3S R1
g

Rl
gD 10

gqq
ab2gd~ l !J . ~23b!

On the other hand, the statistical term for fluctuatio
Dstat(X,Wt) @Eq. ~21!#, may be rewritten in the form of an
expanded McLaurin series:

Dstat~X,Wt!5
1

ND
(
j 51

ND H 12t(
l ,m

Dnl ,m
~ j ! WDA~mRl

g!

1
t2

2! S (l ,m Dnl ,m
~ j ! WDA~mRl

g! D 2

2
t3

3! S (l ,m Dnl ,m
~ j ! WDA~mRl

g! D 3

1¯J .

~24!

It has been shown that the first-order contribution in t
series is identically zero,23 so that only the higher-order con
tributions inDstat(X,Wt) establish its temporal behavior. As
suming a binomial statistical contribution for the populati
of chromophores in the lattice, in the dipole-quadrupole c
we have

Dstat
dq ~X,Wt!5H 11

~X2X2!t2

2!
z~16!@WDA

d-q#~2!

2
X~12X!~122X!t3

3!
z~24!@WDA

d-q#~3!

1[ ~X~12X!26~12X!2X2#

13X2~12X!2
z~32!t4

4!
@WDA

d-q#~4!1¯J ,

~25!

and, for the quadrupole-quadrupole,
-

t

,

s

e

Dstat
qq ~X,Wt!5H 11

~X2X2!t2

2!
z~20!@WDA

q-q#~2!

2
X~12X!~122X!t3

3!
z~30!@WDA

q-q#~3!

1[ ~X~12X!26~12X!2X2#

13X2~12X!2
z~40!t4

4!
@WDA

q-q#~4!1¯J ,

~26!

where, for instance, a representative expression for
@WDA# (k) parameters forq-q interaction is

@WDa
q-q#~2!5

2p* f D~v! f A~v!dv

\~R1
g!10

3H (
ab,gd

n1
max@ 9

16 uQabu2uQgdu2gqq
ab2gd~1!#2J .

~27!

Appendix C includes other@WDA# (k) parameters. Rigorously
the effect of the anisotropy produces a very complex exp
sion for Dstat(X,Wt); however, for simplicity it was pre-
ferred to leave it in reference to average properties of the
angular class. The error that this introduces is marginal
does not change the shape of the calculated decay curv

Finally, since the higher-order multipole interactions ha
a shorter range than those of the dipole-dipole type, a sim
calculation is made, analyzing only the first two angu
classes~l 51 and 2! for the cubic lattice of the elpasolite
type, Cs2NaY12xLnxCl6. Figure 2 shows a comparison be
tween the shape and slope of the decay curves for (d-d),
(d-q), and (q-q) processes, with identical values ofWDA ,
showing that the differences between the shapes of
multipole-multipole interactions studied are small. Mor
over, for large energy transfer rates@Fig. 2~b!# it is impos-
sible, in practice, to distinguish between each decay cu
This behavior is due solely to the statistical effect of t
actual chromophores population in the crystal system, an
is in contrast with the discussions of a series of works.22,27

V. CALCULATION OF THE CROSS-RELAXATION
„

1G4 , 3H6…˜„

3H5 , 3H4… IN Cs2NaYCl6:TmCl 6

One of the possible examples of energy-transfer proce
due to an electric quadrupole-electric quadrupole interac
is that of the cross-relaxation of Tm31 ions (1G4 , 3H6)
→(3H5 , 3H4) in Cs2NaYCl6:TmCl6. Interest in this particu-
lar system and process of energy transfer is due to the h
symmetry properties of the lattice, which will make it po
sible to show more clearly the importance of the anisotro
effect of the quadrupole operator. This example has b
recently studied by Chua and Tanner.20

Partially considering their calculations, the magnitudes
the five componentsuQxyu2, uQyzu2, uQyzu2, uQx22y2

u2, and
uQzzu2 can be established immediately both in the donor
well as in the acceptor ion. Using theJM wave function basis
and assuming pure states, the squares of the matrix elem
z^1uHDA8q-qu2& z2 can be calculated in terms of the produc
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between componentsQab. For example, for the (1G4)
→(3H5) transition in the donor ion, we find the ratios

uQd8d
x22y2

u2:uQd8d
z2

u2:uQd8d
xy u2:uQd8d

yz u2:uQd8d
xz u251: 1

2 : 3
8 : 3

16 : 3
16

while for the (3H4)→(3H6) transition in the acceptor ion
the components take relative values

uQaa8
x22y2

u2:uQaa8
z2

u2:uQaa8
xy u2:uQaa8

yz u2:uQaa8
xz u251: 2

3 : 3
8 :0:0.

In the first place, this shows the strong variations that
appear in the products between components (ab2dg) of
both quadrupole moments.

A complete calculation of this process consideri
the first two angular classes gives a value ofWDA

q-q

52.423106 (s21) for the energy-transfer rate. Appendix
shows details of the calculation. This result is more th
twice the one calculated in Ref. 20, and this is due to the w
in which the crystal model establishes the geometrical effe
of the interaction and global properties. The authors of R
20 did the calculation using a shell model, considering j
one generic donor-acceptor pair in each shell and multip
ing this result by the number of ions in each shell. Rig
ously, the anisotropic effect of the electric quadrupole ope
tor causes that the geometric factorsgqq

(ab2gd)( l ) change
their magnitude significantly depending on the angular o
entation between the donor ion and the acceptor ion, e
within the same angular classl, as can be verified from the
tables included in Appendix B. Thus, in spite of the system
high symmetry, the geometric factors become local prop

FIG. 2. Typical shape of the decay curves.~a!
g543103 (s21) and WDA(0)

q-q 52.43104 (s21) and ~b! g54
3102 (s21) andWDA(0)

q-q 52.43106 (s21), for different relative con-
centrationsx of optical centers. Note the difference in the scale
the plots.
n

n
y
ts
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t
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-
-
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en

s
r-

ties in the higher order multipole interactions, and this resu
in a change of the magnitude ofWDA

q-q . We could predict that
differences should be larger in systems of lower symme
where the anisotropic effects are stronger.

VI. CONCLUSIONS

The crystal model has been extended to account for
most relevant higher-order electric multipole contributio
which are responsible for the energy-transfer processe
crystalline phases doped with luminescent ions that are r
tively separated. This results in the predominance of lo
range interactions, and permits to neglect other short-ra
interactions such as direct exchange, studied in the par
paper.26

Even in crystals with high symmetry, and in contrast w
the purely dipolar case, the electric quadrupole operator
troduces an expected decrease in the isotropicity of the in
action which is observed in both electronic as well as g
metric contributions to the energy-transfer rates. Sim
effects have been observed in the parallel study on ene
transfer rates induced by direct exchange interaction,
though the specific mechanisms are very different. For
stance, this study shows clearly how the geometric factor
the electric dipole–electric quadrupole and elect
quadrupole–electric quadrupole interactions depend exp
itly on the angular orientation~u,f! between thedonor-
acceptorpair, and become local parameters that have to
estimated carefully. These geometric factors have been m
tioned ambiguously in some works,22 and they have been
defined analytically only in this paper, to our knowledge.
contrast, as a result of the anisotropy, the geometric fac
in direct exchange energy transfer are also local parame
but are related to the relative orientation of the electr
clouds, which affects the electronic overlap between the
teracting ions.

The anisotropy of the electric quadrupole operator le
to a higher degree of complexity in the crystal model expr
sions, because the process of summation and averagin
interactions over angular orientations and distances is m
cumbersome. However, with the approximations mention
in this study, the expressions obtained for the decay cur
show full formal agreement with those that correspond to
dipole-dipole mechanism previously established by
author.23,24

This approach has the advantage of expressing the tem
ral evolution of the decay processes in terms of average
rameters that have a precise physical meaning that is kn
from the synthesis data~X! or are easily calculated
from the crystallographic information@geometric factors
gdq

(«2ab)( l ) andgqq
(ab2gd)( l )#. The only parameter that is ad

justable from the experimental information is the glob
energy-transfer rate at a microscopic scale,WDA , which,
however, can be calculated from the theory, as has bee
lustrated with a particular example in Sec. V, based partia
on the results of Chua and Tanner.20

Since the effective energy-transfer ratekeff @see Eqs.~20!
and ~22!#, is a macroscopic magnitude and additive to t
radiative decay rateg, the energy-transfer processes produ
rather rapid relaxations from the excited states. Using
well-known results of Inokuti and Hirayama,16 it has become

f
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common to differentiate the multipolar mechanism of t
transfer processes from the shape of the decay curve,
the one corresponding to quadrupole-quadrupole interact
mentioned as faster and sharper for early relaxa
intervals.1–3,12,16

The results summarized in Fig. 2, where the condition
equal magnitude inWDA(0) for the three types of electric
multipole interaction for several system compositions h
been enforced, indicate that there are no sensible differe
between the shape of decay curves of the different multip
order processes. Inspecting Eqs.~22! and ~23!, it is obvious
that only the values of Riemann’s zeta function,z(s),
change,z(6).z(8).z(10), and therefore the magnitude
the effective energy transfer rates decreases very slig
with an increase in the order of the multipolar interactio
keff

d-d.keff
d-q.keff

q-q . The functionDstat(X,wDA) and its temporal
evolution is also affected, but in a somewhat different sen
although the Riemann zeta functions involved
Dstat(X,wDA) are very similar@for instance,z(12)>z(18)
>z(20)#, the differences of shape are mainly related to
magnitude of the@WDA# (k) parameters. However, the chan
is so small that, in practice and particularly if theWDA
energy-transfer rate is large, the curves overlap@see Fig.
2~b!#. For smaller energy-transfer rates, there are some
ferences between the shape of the decay curves@see Fig.
2~a!#, in such a way that they are more pronounced for
higher-order interactions, but changes are again small
not conclusive for the purposes of fitting experimental d
and deciding the order of the multipolar interaction. Thus
results of this part of the study contradict numerous analy
in the literature.1–3,12,16Moreover, rigorously, the assignme
of the type of predominant multipolar mechanism by ana
sis and fitting of the decay curves loses its meaning in v
of the slight differences in shape of the decay curves of
type or the other seen in Figs. 2~a! and 2~b!. These results
point to the importance of theoretical calculations of t
energy-transfer rates to achieve a correct assignment o
multipolar mechanism.

From the point of view of the crystal model, the on
important information that can be extracted from the exp
mental data is the effective energy-transfer ratekeff , which
can be deduced from the initial slope of the decay curves
fact, if t→0, thenDstat(X,wt)→1 and

d ln r~ t !

dt U
t→0

52~g1keff!52@g1Xz~s!WDA#,

s56,8,10

is true.
With g known ~from very slightly doped crystals!, and

with data for a series of increasingly doped samples~X!, it is
possible to deduce the global energy-transfer rate and c
pare it with the theoretically calculated magnitudes.

Leaving the multipolar transition moments as the on
parameters, the method seems to be robust and easy to u
a realistic estimation of the energy-transfer rates for so
state compounds.
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APPENDIX A: AN APPROXIMATE CALCULATION
OF THE EFFECT OF DISTANCE IN
(«,ab( l zµ«z2zQabz2

„R1
g/Rl

g
…

8gdq
„«2ab…

„ l …

It is easy to show with an example that the geome
factors gdq

(«2ab)(1) and gqq
(ab2gd)(1) for the first angular

class are the dominant terms in these summations. In
choosing the (x2xy) component of the dipole-quadrupo
interaction, the analytic form ofgdq

(x2xy) is as follows:

gdq
~x2xy!54S 1210

Rx
2

R2 125
Rx

4

R4D Ry
2

R2 .

Evaluating for all the ions of the first three angular class
~l 51, 2, and 3! and considering data on donor-acceptor d
tances~see Refs. 23 and 39! in the elpasolite lattice, we
obtain

SR1
g

R1
gD8

gdq
~x2xy!~1! SR1

g

R2
gD8

gdq
~x2xy!~2! SR1

g

R3
gD8

gdq
~x2xy!~3!

1326 0.062538 0.012 3430.444

and thegdq
(x2xy)(1) parameter alone accounts for 98.1%

the total (x2xy) component of the d-q interaction. Addin
contributions up to the second angular classes makes it
sible to account for approximately 99.9%. This criterion
rather general, with slight variations for other components
both («2ab) for d-q and (ab2gd) for q-q, and allows
simpler formalisms for the global transfer rates.

APPENDIX B: CALCULATION OF THE q-q
ENERGY-TRANSFER PROCESS IN Cs2NaYCl6:TmCl 6

The calculation ofkeff
q-q andDstat(X,Wt) in the case of the

energy process of transfer between Tm31 ions in
Cs2NaYCl6:TmCl6 is made considering the first two angul
classes and pertinent crystallographic data.39 The nonzero
geometric factors for the angular classesl 51,2 are
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l 51 ~12 acceptor ions, four in each Cartesian plane.
R5a/&. Typical Cartesian coordinates(uRxu,uRyu,uRzu).

l 52 ~six acceptor ions, two in each Cartesian
axis.R5a. Typical Cartesian coordinates (uRxu,uRyu,uRzu).

~i! planex-y: (a/2,a/2,0) ~i! x axis: (a,0,0)

gqq
xy-xy5361 gqq

zz-zz5 729
16 gqq

xy-xy5256 gqq
zz-zz5 729

16

gqq
yz-yz536 gqq

~x22y2!2~x22y2!5 823
128

gqq
yz-yz5256 gqq

~x22y2!2~x22y2!5 361
16

gqq
xz-xz536 gqq

xz-xz5256

gqq
yz-xz5100 gqq

zz2~x22y2!5 5
4 gqq

zz2~x22y2!5 3145
16

gqq
xy-zz5 225

4

~ii ! Planey-z: (0,a/2,a/2) ~ii ! y axis: (0,a,0)

gqq
xy-xy536 gqq

zz-zz5 13 689
526 gqq

xy-xy5256 gqq
~x22y2!2~x22y2!5 361

16

gqq
yz-yz5361 gqq

yz2~x22y2!5225/16 gqq
yz-yz5256

gqq
xz-xz536 gqq

~x22y2!2~x22y2!5 5021
256

gqq
xz-xz5256 gqq

zz2~x22y2!5 3145
16

gqq
yz-zz5 225

4 gqq
zz-zz5 729

16

gqq
xy-xz5100 gqq

zz2~x22y2!5 5465
256

~iii ! Planex-z: ~a/2,0,a/2) ~iii ! z axis: (0,0,a)

gqq
xy-xy536 gqq

zz-zz5 13 689
256 gqq

xy-xy516 gqq
zz-zz5 1573

8

gqq
yz-yz536 gqq

xz2~x22y2!5 225
16

gqq
yz-yz5256 gqq

(x22y2)2(x22y2)51

gqq
xz-xz5361 gqq

~x22y2!2~x22y2!5 5021
256

gqq
xz-xz5256

gqq
yz-zz5 225

16

gqq
xy-xz5100 gqq

zz2~x22y2!5 5465
256

In this way, the different contributions tokeff
q-q are established, forming the products

(
ab,gd

(
l 51,2

uQabu2uQgdu2S R1
g

Rl
gD 10

gqq
~ab2gd!~ l !.

Taking the magnitudes for the integral of the spectral form functions, dielectric constant and field correction factor from
and Tanner’s work,20 this finally gives a value ofkeff

q-q52.423106 s21.

APPENDIX C: LIST OF THE †WDA‡
„k… PARAMETERS

The @WDA# (k) parameters arise from the statistical termDstat(X,Wt), and the first (k)52,3,4 parameters have the followin
analytical expressions:

@WDA
d-q#~2!5

4p2~* f D~v! f A~v!dv!2

\2~R1
g!16 H (

«,ab
n1

max@ 3
4 um«u2uQabu2gdq

«2ab~1!#2J ,

@WDA
d-q#~3!5

8p3~* f D~v! f A~v!dv!3

\3~R1
g!24 H (

«,ab
n1

max@ 3
4 um«u2uQabu2gdq

«2ab~1!#3J ,
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@WDA
d-q#~4,1!5

16p4~* f D~v! f A~v!dv!4

\4~R1
g!32 H (

«,ab
n1

max@ 9
16 um«u2uQabu2gdq

«2ab~1!#4J ,

@WDA
d-q#~4,2!5

16p4~* f D~v! f A~v!dv!4

\4~R1
g!32 H (

«,ab
~n1

max!2@ 9
16 um«u2uQabu2gdq

e2ab~1!#4J .

For theq-q interaction,

@WDA
q-q#~2!5

4p2~* f D~v! f A~v!dv!2

\2~R1
g!20 H (

eb,gd
n1

max@ 9
16 uQabu2uQgdu2gqq

ab2gd~1!#2J ,

@WDA
q-q#~3!5

8p3~* f D~v! f A~v!dv!3

\3~R1
g!30 H (

ab,gd
n1

max@ 9
16 uQabu2uQgdu2gqq

ab2gd~1!#3J ,

@WDA
q-q#~4,1!5

16p4~* f D~v! f A~v!dv!4

\4~R1
g!40 H (

ab,gd
n1

max@ 9
16 uQabu2uQgdu2gqq

ab2gd~1!#4J ,

@WDA
q-q#~4,2!5

16p4~* f D~v! f A~v!dv!4

\4~R1
g!40 H (

ab,gd
~n1

max!2@ 9
16 uQabu2uQgdu2gqq

«2ab~1!#4J .

Evaluating these expressions for the (1G4 , 3H6)→(3H5 , 3H4) (q-q) energy transfer process in the Tm31 elpasolite lattice up
to k54, the following values are obtained:

@WDA
q-q# (2) (s22) @WDA

q-q# (3) (s23) @WDA
q-q# (4.1) (s24) @WDA

d-q# (4.2) (s24)

2.313107 6.9031015 1.8131021 7.2631021
ys
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